
On the Link of Data Synchronization to Self-Organizing Map

Algorithm

Takaya Miyano† and Takako Tsutsui‡

†Department of Micro System Technology, Ritsumeikan University,
1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, JAPAN

‡Department of Health and Social Services, National Institute of Public Health,
2-3-6 Minami, Wako, Saitama 351-0197, JAPAN

Email: tmiyano@se.ritsumei.ac.jp, tsutsui@niph.go.jp

Abstract—We have recently devised a method for
feature extraction from multivariate data using an
analogue of Kuramoto’s dynamics for modeling col-
lective synchronization in a network of coupled phase
oscillators. In our method, which we call data syn-
chronization, the phase oscillators carrying informa-
tion in their natural and updated rhythms achieve par-
tial synchronizations of the oscillators whose common
rhythms are interpreted as the template vectors rep-
resenting the general features of the data set. In this
study, we discuss the link of data synchronization to
the self-organizing map algorithm as a popular method
for data mining and show through numerical experi-
ments how data synchronization can fix the problem of
the self-organizing map algorithm on the initial setting
of reference vectors.

1. Introduction

Finding patterns from data is one of the interest-
ing and important applications of large-scale databases
that grow to become indispensable information infras-
tructures of the society. To meet such social needs, a
variety of mathematical methods for data mining have
been developed. Among others, the self-organizing
map (SOM) algorithm devised by Kohonen, which is
currently one of the three major prototypes of artifi-
cial neural networks, is a powerful and popular method
applicable to multivariate data [1, 2]. Unfortunately,
the SOM algorithm has a bottleneck that reference
vectors as candidates for general feature patterns to
be extracted from given data must be provided at the
initial stage of learning to initiate the learning process.
Even if the reference vectors are generated by random
selection from data, as is often performed in actual ap-
plications, the appropriate number of reference vectors
has to be determined by some rules. In many practical
cases, no such rules are available.

Recently, we have developed a method for spon-
taneous data clustering to perform feature extrac-
tion from multivariate data [3]–[5], on the basis of
Kuramoto’s model for collective synchronization in a

network of coupled phase oscillators [6]–[8]. In our
method, which we call data synchronization, phase os-
cillators carry given multivariate data in their natural
rhythms and update their rhythms through nonlinear
coupling between oscillators to achieve partial synchro-
nizations of the oscillators. The common rhythms of
the self-organized synchronous groups are interpreted
as the template vectors that represent the general fea-
tures of the data set. Data synchronization does not
require reference vectors such that the SOM algorithm
requires to initiate the learning process. In the previ-
ous work [4], we found that the equations governing
data synchronization become equivalent to the com-
petitive learning rule for SOM when they are linearized
about partial synchronous solutions. This implies that
the reference vectors for the SOM algorithm are spon-
taneously generated during the nonlinear regime of the
dynamics governing data synchronization. Our find-
ings might suggest that data synchronization can over-
come the bottleneck of the SOM algorithm.

In this paper, we briefly summarize our recent find-
ings about the link of data synchronization to the SOM
algorithm and show through numerical experiments of
data clustering how the bottleneck of the SOM algo-
rithm can be overcome in data synchronization.

2. Self-organizing Map Algorithm

We briefly describe the main points of the compet-
itive learning rule for the SOM algorithm. Given N
sample vectors {xi = (xi1, · · · , xiD)}N

i=1 with D de-
grees of freedom, we generate a set of M reference
vectors with D degrees of freedom, {mi}M

i=1, by the
method mentioned later in this section. To update the
reference vectors, we use a continuous batch learning
rule of the form

ṁi =
1
Ni

N∑
j=1

h(ρi,j) (xj −mi) , (1)

=
1
Ni

Ni∑
k=1

κ(t)
(
xj(k) −mi

)
, (2)
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ρi,j = | xj −mi | ,
where the overdot denotes differentiation with respect
to dimensionless time, Ni is the number of nearest
sample vectors xj(k) (k = 1, · · · , Ni) tomi, and h(ρi,j)
is the partitioning function defined as h(ρi,j) = κ(t) if

ρi,j = min
k

(| xj −mk |)

with the adaptation gain κ(t) (0 < κ(t) < 1), and
h(ρi,j) = 0 otherwise. The nearest reference vector
to xj(k) exclusively utilizes xj(k) at a time to update
itself. In the limit N → ∞,

1
Ni

Ni∑
k=1

κ(t)xj(k) → κ(t)X i , (3)

where Xi is the mean vector over all sample vectors
in the neighborhood of mi. Consequently,

ṁi = κ(t) (Xi −mi) . (4)

Hence, this learning rule inherits the local mean-field
characteristic of the data space.

The reference vectors can be set at the initial stage
of the learning process using prior knowledge about the
features to be extracted. If there is no such knowledge,
random selection from the sample vectors suffices. In
either case, however, there is no rule for determining
the appropriate number of reference vectors. In this
sense, the initial settings of the reference vectors are
determined haphazardly. Equation (4) leads to the
convergence of the reference vectors to certain tem-
plate vectors representing the general features of the
population ensemble of the learning data. As will be
shown in the next section, it turns out that the com-
petitive learning rule for SOM can be derived from
the equations governing data synchronization as their
linearized version about partial synchronous solutions.

3. Link of Data Synchronization to SOM Algo-
rithm

In data synchronization, we use dynamics as an ana-
logue of Kuramoto’s dynamics for modeling collective
synchronization in a network of coupled phase oscilla-
tors. For details, see [3, 4]. In our method, we assign
the multivariate data, {xi}N

i=1, to the natural frequen-
cies of the phase oscillators subject to the following
equations with n = 1, · · · , D:

θ̇in = xin +
K

Ni

N∑
j=1

H
(
d̃i,j

)
sin (θjn − θin) , (5)

d̃i,j = | xi − xj | ,
whereK is a positive coupling constant, Ni is the num-
ber of neighboring vectors to xi and θin is the nth

entry of the phase vectors θi = (θi1, · · · , θiD), whose
initial values are given as random numbers. θ̇i = ωi

represents the updated value of xi at each instant in
the time evolution. The partitioning functionH deter-
mines the range of mutual interaction between phase
oscillators. It is defined as H

(
d̃i,j

)
= 1 if d̃i,j ≤ d̃0

and H
(
d̃i,j

)
= 0 otherwise. Here, d̃0 = α | xi | with

a positive constant α, which determines Ni neighbor-
ing vectors with which the phase vector θi can inter-
act. Thus, each oscillator conveys the original and up-
dated data through its natural and adaptive rhythms,
respectively. This enables the self-organization of data
vectors.

The dynamics of Eq. (5) have a local mean-field
characteristic that is associated with the statistical
properties of the self-organized data in the limit N →
∞. Let us define the local-order parameters and lo-
cal mean-field phase vectors, ri = (ri1, · · · , riD) and
ψi = (ψi1, · · · , ψiD), respectively, as

rin exp
(̃
iψin

)
=

1
Ni

N∑
j=1

H
(
d̃i,j

)
exp

(̃
iθjn

)
, (6)

where ĩ =
√−1. Thus, we can rewrite Eq. (5) as

θ̇in = xin +Krin sin (ψin − θin) . (7)

Let us consider the phase vectors belonging to the
gth group, denoted as Γg, of G partially synchronized
groups and denote each entry of a phase vector be-
longing to the gth group as θi(g)n = ψgn + Δθi(g)n

and its common frequency as Xgn = ψ̇gn, where
Xg = (Xg1, · · · , XgD) with g from 1 to G. Then,
Eq. (7) becomes

Δ̇θi(g)n = xi(g)n −Xgn −Krgn sin
(
Δθi(g)n

)
. (8)

Accordingly, the frequency vectors will converge to the
true mean frequency vector in the partially synchro-
nized group in the limit N → ∞. In this way, the
multivariate data undergo spontaneous grouping. The
common frequency vectors Xg are interpreted as the
template vectors that represent the general features of
the learning data.

From the necessary condition for Eq. (8) to have
fixed points, the coupling constant K is set to a suf-
ficiently large value. The coarse-graining parameter α
that determines the resolution for discriminating one
partially synchronized group from another is set so
as to yield a sufficient number of neighbors in the
neighborhood of xi. In fact, the vertical angle φ
between xi and its outermost neighbor is defined as
φ = sin−1

(
d̃0/ | xi |

)
= sin−1 α.

To establish the link between data synchronization
and the SOM algorithm, we rewrite Eq. (7) as

ωin = xin +Krgn sin (ψgn − θin) , (9)
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where i ∈ Γg . Equation (9) is linearized about ψgn −
θin = 0, i.e., the partially synchronized state:

ωin ≈ xin +Krgn(ψgn − θin) . (10)

Taking the derivative of both sides of Eq. (10) with
respect to time, we obtain

ω̇in = Krgn (Ωgn − ωin) . (11)

Here, rg is assumed to change slowly with time and
be approximately constant near ψgn − θin = 0 and
Ωg = ψ̇g. By the substitutions of

ωi = mi ,

Krgn = κ(t) = κ = constant ,
Ωg = Xg ,

we can reproduce Eq. (2) from Eq. (11). Thus, the
competitive learning rule for SOM is shown to be a
linearized version of the dynamics governing data syn-
chronization about partially synchronized states.

4. Numerical Experiments

We conducted numerical experiments of data clus-
tering for multivariate data with three degrees of free-
dom (D = 3). In these experiments, we supposed three
groups to each of which five data vectors should be-
long, given as xi = (1+ε, ε, ε), (ε, 1+ε, ε) or (ε, ε, 1+ε)
with Gaussian random numbers ε of mean 0 and vari-
ance 0.1. These groups were labeled as group 1, group
2 and group 3 for convenience, represented by the
template vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1), respec-
tively. The magnitude of the variance in ε, i.e., the
diversity in the data vectors of each group implies that
particular settings of the coupling constant K = 0.5
and the adaptation gain κ(t) = 0.5 are sufficient for
data synchronization as well as the SOM algorithm to
achieve data clustering.

In a first experiment, we ran the dynamics of Eq. (2)
at a time width of 0.05 with κ(t) = 0.5 and observed
how data clustering was performed by the SOM al-
gorithm. In this experiment, each of three reference
vectors was selected from groups 1, 2 and 3, respec-
tively. This represents an appropriate initial setting
of the reference vectors. Results are shown in Fig. 1.
Owing to the appropriate selection of the reference vec-
tors, the template vector of each group was correctly
generated.

In a second experiment, we again ran the dynam-
ics of Eq. (2) at a time width of 0.05 with κ(t) = 0.5.
In this experiment, two reference vectors were selected
from group 1 and one vector from group 3. This repre-
sents an inappropriate setting of the reference vectors.
Results are shown in Fig. 2. Although the template
vector of group 3 was correctly generated, those of

groups 1 and 2 were not correctly generated due to
the inappropriate selection of the reference vectors.

In a third experiment, we ran the dynamics of
Eq. (5) at a time width of 0.05 with K = 0.5 and
α = 0.3, 0.5, 0.7 and 1, and observed how data clus-
tering was performed by data synchronization. This
experiment was free from the initial setting of the ref-
erence vectors, since data synchronization requires no
reference vectors to initiate the learning process. In-
stead, the initial values of θi were set to be Gaussian
random numbers of mean 0 and variance 1. Results
for α = 0.5 are shown in Fig. 3. We obtained similar
results for α = 0.3, 0.7 and 1 to those shown in Fig. 3.
Despite different settings of α, the template vector of
each group was correctly generated by data synchro-
nization as was performed using the SOM algorithm
with the appropriate setting of the reference vectors.
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Figure 1: Data clustering of three-dimensional data
vectors by SOM algorithm with appropriate selection
of reference vectors. Learning data are shown by +
and extracted feature vectors by three dotted lines.

5. Discussion and Conclusion

The present numerical experiments demonstrate the
pathology of the SOM algorithm that feature extrac-
tion strongly depends on the initial setting of reference
vectors. As has been shown in Fig. 2, an inappropri-
ate setting of reference vectors leads to the generation
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Figure 2: Data clustering of three-dimensional data
vectors by SOM algorithm with inappropriate selec-
tion of reference vectors. Learning data are shown by
+ and extracted feature vectors by three dotted lines.

of incorrect template vectors, despite an appropriate
setting of the number of the reference vectors. Such a
situation is likely to occur in practical applications of
the SOM algorithm when no prior information about
the feature patterns to be extracted is available. The
disadvantages of the SOM algorithm can be overcome
by data synchronization. Although data synchroniza-
tion requires appropriate settings of the coupling con-
stant K and coarse-graining level α, it can be insen-
sitive to α due to particular statistical distribution of
data and thus can generate correct template vectors
regardless of the setting of α, as has been shown in
Fig. 3. In general, the setting of α is crucial in data
synchronization, since it determines the resolution for
discriminating one synchronous cluster of data vectors
from another. Nevertheless, we have no general and
systematic method for optimizing α. Developing such
a method is an issue of interest that is worth investi-
gating in a future work.
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