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Abstract—In this study, we consider a piecewise-
constant chaotic circuit with time-delayed feedback. The
system exhibits some stabilized Unstable Periodic Orbits
which are embedded on chaos attractor of the chaotic sys-
tem as Delayed Feedback Controlled system. We con-
sider providing the theoretical analysis for the condition
of stability of the system and the domain of attraction. In
general, it is relatively hard to treat a dynamical system
with time-delayed components in theoretical sense. How-
ever, a dynamics of our proposed system is governed by
piecewise-constant vector field, so it can be analyzed based
on the simple geometry of the phase space. The fact makes
us approach to rigorous analysis of the system behavior. In
this paper, some experimental results are demonstrated in
the real circuit.

1. Introduction

Since chaotic phenomena is characterized as sensitivity
to initial conditions and perceived random behavior, it is
difficult to predict the behavior in distant future. Hence
chaos is often treated as objects that should be controlled
and there are many works to stabilize Unstable periodic or-
bits (abbr. UPOs) embedded on chaos attractor which non-
linear dynamical systems exhibit. The approach is called
as control of chaos in general [1].

As an example of methods of control of chaos, Delayed
Feedback Control (abbr. DFC) proposed by Pyragas is well
known [2]. DFC scheme stabilises UPOs by using the feed-
back of the difference between the current state and the de-
layed one. DFC has a significant advantage which requir-
ing no preliminary calculation of the target periodic orbit
or equilibrium point. However, DFC has a limitation such
as any hyperbolic unstable periodic orbit with odd number
condition can not be stabilized. The odd number condition
means UPOs which have an odd-number of real character-
istic multipliers greater than unity [3]. For continuous time
systems, the odd number condition have been studied in de-
tail by Nakajima [4] and Just at. al [5]. And some works to
expand the range of application have been considered with
maintaining the advantage of DFC [6][7].

In general, systems with time-delayed feedback are de-
scribed by differential-difference equations and the state
space has infinite dimension. The fact means that it is in-
trinsically hard to analyze the controlled system by DFC
method.
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Figure 1: Circuit diagram of the piecewise-constant system

In this study, we focus on a piecewise-constant chaotic
circuit with time-delayed feedback and consider the mech-
anism of stabilization of UPO by using time-delayed state
feedback. The trajectories generated by the chaotic sys-
tem is piecewise-linear rigorously, so the return map also
must be piecewise-linear. By using the return map, we
can analyze the basic system behavior theoretically [8]. In
this paper, we propose a controlled system which has time-
delayed feedback and maintains piecewise-constant char-
acteristic. The system behavior with time-delayed feed-
back is governed by piecewise-constant vector field and can
be treated on the view point of geometric sense. The fact
suggests that the controlled system can be analyzed with
respect to the stability and the domain of attraction, theo-
retically. In this paper, we show some experimental results
from the real circuit and verify the stability.

2. A chaotic spiking oscillator with piecewise-constant
vector field

Figure 1 shows the circuit diagram of the piecewise-
constant circuit. The triangle labelled 1 (−1, respectively)
is a linear amplifier with gain 1 (−1, respectively). The
triangles labelled ”+ −” are comparators. These ampli-
fiers and comparators are realized by an operational ampli-
fier with sufficiently large input impedance. Trapezoids are
differential voltage-controlled transconductance amplifiers
and their output currents are i1 and i2, respectively. They
are characterized by

i1 = Ia · sgn(v2 − E),
i2 = Ia · sgn(v2 − av1),(

sgn(x) =

{
1 for x ≥ 0,

−1 for x < 0.

) (1)
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where v1 and v2 are voltages across the capacitors C. Ia is
constant which is controlled by a bias current of transcon-
ductance amplifiers. Connecting two capacitors to both
output terminals of the transconductance amplifiers, we
obtain a two dimensional nonlinear system. When S is
opened, the circuit dynamics is described by

ẋ = sgn(y − 1),
ẏ = sgn(y − ax), (2)

where ”・” represents the derivative of τ and the following
dimensionless variable and parameters are used.

τ =
Ia

CE
t, x =

1
E

v1, y =
1
E

v2. (3)

Here, we assume the following parameter condition:

a >

√
2 + 1√
2 − 1

. (4)

In this parameter range, Equation (2) has unstable rect-
spiral trajectories as shown in Fig. 2.

In this circuit as shown in Fig. 1, M.M. is a monos-
table multivibrator which outputs pulse signals to close the
switch S and to open S̄ instantaneously. Two compara-
tors detect impulsive switching condition. If v2 ≤ av1 or
v2 ≥ 0, the switch S is opened and S̄ is closed. For the
meantime, the voltage v1 and v2 is stored to CC1 and CC2,
respectively. If v2 > av1 and v2 < 0, then M.M. is trig-
gered by the pair of comparators, and the switch S is closed
and S̄ is opened instantaneously. At that time, the voltage
v1 and v2 is reset instantaneously to the inverse voltage −v1

and −v2, respectively. That is

[v1(t+), v2(t+)]T = [−v1(t),−v2(t)]T , (5)

if v2(t) > av1(t) and v2(t) < 0,

where t+ ≡ limε→0{t + ε}.
Because the parameter condition (4), the trajectory must

reach to {(v1, v2)|v2 > av1, v2 < 0}. Namely, any trajec-
tories must hit lth={(x, y)|y = ax, y = 0} and jumps from
(y(τ)

a , y(τ)) to (−y(τ+)
a ,−y(τ+)) as shown in the left fig-

ure of Fig. 2, where τ is the n-th switching moments.
Consequently, Eqn. (2) and (5) with the condition (4) are

transformed into{
ẋ = sgn(y − 1),
ẏ = sgn(y − ax), for S = off,

[x(τ+), y(τ+)]T = [−x(τ),−y(τ)]T , (6)

if y(τ) > ax(τ) and y(τ) < 0,(
a >

√
2 + 1√
2 − 1

)
.

Now the system is characterized by only parameter a. The
right figure of Fig. 2 shows a typical chaotic attractor with
a = 5.84.
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Figure 2: Behavior of Trajectories on the phase space and
a typical chaos attractor. (a ' 5.84)

0
ny

1n

1
2

y

0
ny

1ny

1
2AA A A1 1

Figure 3: A typical 1-D return map

3. 1-D return map

In order to analyze the dynamics of the chaotic spiking
oscillator, we derive a 1-D return map. Trajectory rotates
divergently around the singular point ( 1

a ,1) and reaches
l ≡ {(x, y)|y = ax} of piecewise constant vector field
within a finite time. We define τn as the n-th reaching time
to l. The trajectory starting from (x(τn), y(τn)) must re-
turn to (x(τn+1), y(τn+1)) on l. Letting (x(τn), y(τn)) on
l be represented by its y-coordinate, we can define one di-
mensional return map f from l to itself and f is represented
as

f : l 7→ l, yn+1 = f(yn), (7)

where we rewrite yn = y(τn). By using piecewise-
constant trajectory and linear algebraic procedure, we ob-
tain an explicit expression for the function f :

f(yn) =
{

−A(yn − 1) + 1 for yn ≥ 0,
−yn for yn < 0,

(8)

where A =
a + 1
a − 1

. For the conditions 1 < A < 2, Eqn. (8)

exhibits a chaotic strictly[8]. Typical map f are shown in
Fig. 3. Henceforth, this parameter condition is considered.
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4. A piecewise-constant chaotic circuit with delayed
feedback control

4.1. Delayed feedback control

DFC proposed by K. Pyragas is practically useful for
control of chaos. Consider the following general dynamic
system

ẋ = f(x) (x ∈ Rd). (9)

DFC stabilizes UPO with period τd embedded in a chaotic
attractor. The control input is given by

u(t) = K[y(τd − t) − y(t)]. (10)

Here τd is also a delay time. If this time coincides with
the period of UPO, then the perturbation becomes zero on
the stabilized periodic orbit. The controlled system is the
followings

ẏ = f(x) + u(t)
= f(x) + K(y(τd − t) − y(t)). (11)

K is an control gain. Choosing an appropriate K can
achieve the stabilization. DFC has an advantage such that
no preliminary calculation of the UPO is not required.
However, it is difficult to analyze since the closed loop sys-
tem is described by a differential-difference equation with
infinite dimension.

4.2. Proposed method

We consider delayed time feedback is applying to the
piecewise-constant circuit. We propose a following method
which includes the control term in the signum function．{

ẋ = sgn(y − 1 + ux(τ)),
ẏ = sgn(y − ax),

(12)

ux(τ) = K(x(T − τ) − x(τ)). (13)

The method is different from the typical DFC and main-
tains the piecewise-constant vector field. So the system
can be analyzed based on the simple geometry of the phase
space.

4.3. Computational simulation

The effectiveness of our method is confirmed by com-
putational simulations. The system dynamics is described
by {

ẋ = sgn(y − 1 + ux(τ)),
ẏ = sgn(y − ax),

(14)

ux(τ) = K(x(T − τ) − x(τ)), (15)

(x(τ+), y(τ+)) = (−x(τ),−y(τ)), (16)

if y(τ) > ax(τ) and y(τ) < 0,

where the following parameters are used,

T = 3.886, a =
√

2 + 1√
2 − 1

' 5.84, K = 0.2. (17)

The goal is to stabilize the orbit of one cycle UPO. Since
the system has piecewise constant characteristic, the moved
distance one cycle UPO is equal to elapsed time. In fact,
T can be led to 3.883 from 1-D return map easily. We
simulate the system on the following conditions.
(Case 1) not controlled,
(Case 2) Initial value is (x0, y0) = (−0.061, 1.199),
(Case 3) Initial value is (x0, y0) = (0.221,−0.457),
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Figure 4: Chaos attractor with K = 0 (case 1)
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Figure 5: Stabilized periodic attractor with K = 0.2 (case
2)
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Figure 6: Converged trajectory to singular point with K =
0.2 (case 3)

Figure 4 shows the original chaos attractor of the system
not controlled. Figure 5 shows the case of applying control
scheme after τ = 50, in this Case 2, stabilized periodic
orbit with one cycle is confirmed. Also Fig. 6 shows the
case of applying control scheme after τ = 48, in this Case
3, the trajectory converges to singular point ( 1

a , 1). That is,
depending on the initial condition at the moment of starting
the control, some co-existence of attractors are observed.
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Figure 7: Experimental circuit with delayed feedbacks.

5. The experimental circuit

5.1. Implement circuit and dynamics

Figure 7 shows the controlled circuit. We use OTA:
LM13700 for transconductance amplifier, LM339 for com-
parator, 4538 for monostable multivibrator and 4066 for
analog switch. In order to generate time-delayed states,
Digital signal processor 6713 DSK is used. The circuit dy-
namics is represented by

C dv1
dt = sgn(v2 − E + KD1),

C dv2
dt = sgn(v2 − av1),

D1 = v1(T ′ − t) − v1(t),
(18)

(v1(t+), v2(t+)) = (−v1(t),−v2(t)), (19)

if v2 > av1 and v2 < 0,

τ =
Ia

CE
t, x =

1
E

v1, y =
1
E

v2, (20)

where parameter values are followings: C = 10[nF], a '
5.9, E = 1.0[V]. Figure 8 and 9 shows chaos attractor and
stabilized periodic orbit, respectively.

6. Conclusion

We considered a piecewise-constant chaotic circuit with
time-delayed feedback. From the system, some stabilized
UPO can be confirmed by using time-delayed feedback
state. The dynamics of our proposed system was governed
by piecewise-constant vector field, namely it was suggested
that the simple analysis based on geometry approach of the
phase space is possible. Some experimental results were
demonstrated in the real circuit. In the future, we will pro-
vide analytical result for the stability and the domain of
attraction.
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Figure 8: Chaos attractor and delayed states (horizon-
tal axis: v1[500mV/div],vertical axis: v2[500mV/div] for
left column. horizontal axis: t[µsec/div], vertical axis:
v1(t), v1(T ′ − t)[1V/div] for right column. K = 0)
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Figure 9: A stabilized periodic orbit and delayed
states (horizontal axis: v1[500mV/div],vertical axis:
v2[500mV/div] for left column. horizontal axis:
t[µsec/div], vertical axis: v1(t), v1(T ′−t)[1V/div] for right
column. K = 0.13)
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