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Abstract—Starting with an initial random network of
oscillators with a heterogeneous frequency distribution,
its autonomous synchronization ability can be largely im-
proved by appropriately rewiring the links between the ele-
ments. Ensembles of synchronization-optimized networks
with different connectivities are generated and their statis-
tical properties are studied.

1. Introduction

In the last decade, much interest has been attracted to
studies of complex networks consisting of dynamical el-
ements involved in a set of interactions [1]. Particular
attention has been paid to problems of synchronization
in network-organized oscillator systems [2, 3]. Investiga-
tions focused on understanding the relationship between
the topological structure of a network and its collective syn-
chronous behavior [4]. Recently, it has also been shown
that the ability of a network to give rise to synchronous
behavior can be greatly enhanced by exploiting the topo-
logical structure emerging from the growth processes [5].
However, full understanding of how the network topology
affects synchronization of specific dynamical units is still
an open problem.

One possible approach is to use evolutionary learning
mechanisms in order to construct networks with prescribed
dynamical properties. Several models have been explored,
where dynamical parameters were modified in response to
the selection pressure via learning algorithms, in such a
way that the system evolved toward a specified goal [6, 7].
In our study, this approach is employed to design phase os-
cillator networks with synchronization properties. We con-
sider adaptive evolution of a network of coupled heteroge-
neous phase oscillators. The question is how to connect a
set of phase oscillators with given natural frequencies, so
that the resulting network would exhibit the strongest syn-
chronization, under the constraint that the total number of
available links is fixed.

To design optimal networks, stochastic Markov Chain
Monte Carlo (MCMC) method with replica exchange is
used by us. Large ensembles of optimal networks are con-
structed and their common statistical properties are ana-
lyzed.

2. Model and the Optimization Method

We consider N oscillators with different natural frequen-
cies placed onto the nodes of a network. The evolution of
this system is given by

dθi
dt
= ωi +

λ

N

N∑
j=1

wi, j sin(θ j − θi), (1)

where ωi is the natural frequency of oscillator i and λ is the
coupling strength. The weights wi, j define the adjacency
matrix w of the interaction network: wi, j = 1 if oscillator
i interacts with oscillator j, and wi, j = 0 otherwise. The
adjacency matrix is generally asymmetric.

To quantify synchronization of the oscillators, the Ku-
ramoto order parameter

r(t) =
1
N

∣∣∣∣∣∣∣
N∑

i=1

exp(iθi)

∣∣∣∣∣∣∣ (2)

is employed. Under perfect synchronization, we have r =
1, whereas r ∼ O(N−1/2) in absence of coupling for ran-
domly drawn natural frequencies. A second-order transi-
tion takes place at some critical coupling strength λc from
the desynchronized to the synchronized states [8].

To measure the degree of synchronization, we numer-
ically integrate Eq. (1) for given initial conditions θi(t =
0) ∈ [0, 2π) and calculate the average modulus of r(t) over
a long time T,

R(w) =
〈

1
T

∫ T

0
r(t)dt

〉
init.
, (3)

where 〈. . .〉init. represents an average over many realizations
with different initial conditions θi(0).

Our aim is to determine the network w which would ex-
hibit the highest degree of synchronization, provided that
the total number of links is fixed and a set of natural fre-
quencies is given. The network construction can be seen as
an optimization problem. The optimization task is to max-
imize the order parameter and, possibly, bring it to unity
by changing the network w. An approximate standard ap-
proach to the problems of complex combinatorial optimiza-
tion, such as the traveling salesman problem, is provided by
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Figure 1: Average order parameters as functions of the net-
work connectivity p. The filled circles are for the replica
β0, i.e., the ensemble of randomly rewired networks. The
squares, diamonds, triangles, inverted triangles, and open
circles are for replicas with β = 40, 80, 120, 160, and 200,
respectively. Inset: Ratio of the average order parame-
ters for the synchronization-optimized ensemble with the
inverse temperature βM and for β0 = 0. The parameters are
p = 0.2,N = 20, λ = 1.0, γ = 0.3,M = 21, δβ = 10.

the method of simulated annealing. However, we are inter-
ested in the statistical properties of the synchronization-
optimized networks rather than in a search for the best-
optimized network. If multiple samples are generated us-
ing conventional optimization methods such as simulated
annealing, it is difficult to control the probability of the
repeated appearance of the same (or similar) items in the
obtained set of samples.

To study statistical ensembles of optimized networks, the
MCMC method [9] which has previously been applied to
dynamical systems, [10, 11, 12], will be used. The canon-
ical ensemble average of a network function f (·) is intro-
duced as

fβ =
∑

w

f (w) exp[βR(w)]
Z(β)

, (4)

where Z(β) =
∑

w exp(βR(w)) is the partition function and
the parameter β plays the role of the inverse temperature.

Hence, the problem is reduced to sampling from the
ensemble with the Gibbs distribution exp(βR(w)). Such
ensemble can be generated, for example, by using the
Metropolis algorithm [13] , which is the simplest imple-
mentation of the MCMC method. This Metropolis algo-
rithm appears to provide a simple and universal way of
generating the Gibbs network distribution. However, the
efficiency of such algorithm gets worse when β increases,
particularly in the case of a highly jagged landscape R(w).
This deficiency can be eliminated by using instead the
replica exchange Monte Carlo (REMC) algorithm [14].

In a REMC simulation, a number of replicas {wm} with
different inverse temperatures βm are evolved in parallel.
At regular evolution time intervals, the performances of a
randomly selected, adjacent pair of replicas are compared.
The running configurations of the two selected replicas are

exchanged with the probability min
[
1, exp (∆β∆R)

]
, where

∆β = βm+1−βm is the difference of the inverse temperatures
of the pair and ∆R = R(wm+1) − R(wm) is the difference of
their performances.

Explicitly, the algorithm is defined as follows:

1. The states of replicas {w0
m} are initialized by random

networks (which is chosen as a random Erdös -Rényi
network).

2. The candidate for the next network w′m at iteration
step n is obtained from the current network w(n)

m by
rewiring one of its links. A randomly chosen link is
moved to a randomly chosen link vacancy, so that the
total number of links remains conserved.

3. The evolution equations (1) for the network w′m are
integrated using the standard Euler algorithm. The or-
der parameter is then calculated and averaged over the
time interval t ∈ [0,T ] and over a fixed number of
realizations starting from different random initial con-
ditions. Thus, the synchronization property R(w′m) of
the candidate network is determined.

4. Next, a random number x ∈ [0, 1] is uniformly drawn.
If

x <
exp(βR(w′m))

exp(βR(w(n)
m ))
,

the candidate is accepted and taken as w(n+1)
m = w′m;

otherwise nothing is changed, so that w(n+1) = w(n)
m .

5. At regular evolution time intervals, the performances
of a randomly selected, adjacent pair of replicas are
compared. The running configurations of the two se-
lected replicas are exchanged with the probability

min
[
1, exp

{
(βm+1 − βm)(R(w(n+1)

m+1 ) − R(w(n+1)
m )
}]
.

6. Return to step (2) until the statistical average Eq. (4)
converges.

3. Numerical analysis

To determine the synchronization degree of a given net-
work at each iteration step of the optimization procedure,
Eq. (1) was numerically integrated with the time incre-
ment ∆t = 0.05. Averaging over five independent realiza-
tions started from different random initial conditions has
been furthermore performed at each iteration step. Oscil-
lator ensembles of sizes N = 10 and 20 were considered.
Natural frequencies of the oscillators were always chosen
as ωi = −γ + 2γi/N , so that they uniformly distributed
within the interval [−γ, γ]. For time averaging, intervals of
length T = 100 and 200 were typically used. The results
did not significantly depend on T when sufficiently large
lengths T were taken. Using the order parameter, graphs w
were sampled by the REMC optimization method. In par-
allel, evolution of M replicas with the inverse temperatures
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Figure 2: Upper panels show adjacent matrices averaged over the Gibbs ensemble of synchronization-optimized networks
[see Eq. (5)]. The darker color of a matrix element indicates the higher probability of the respective connections between
the elements. Lower panels display the corresponding network averaged over the Gibbs ensemble. Numbers in the circles
show indexes of the oscillators. The thickness of the lines connecting the nodes is proportional to the frequency of links
between them. The network connectivities are (a) p = 0.05, (b) 0.2, and (c) 0.3.

βm = δβ×m, m = 0, 1, . . . ,M was performed (with M = 21
and δβ = 10). At each five Monte Carlo steps (mcs), the
performances of a randomly chosen pair of replicas were
compared and exchanged, as described above. For display
and statistical analysis, sampling at each every 50 mcs after
a transient of 5000 mcs has been undertaken.

Hereafter, we investigate how the synchronization-
optimized network change with increasing the network
connectivity p = K/N(N − 1), where K is off-diagonal ele-
ments of the adjacency matrix.

3.1. Optimization at different temperatures

Synchronization-optimized networks were obtained by
running the evolutionary optimization. In this process, the
order parameter was progressively increasing until a sta-
tionary state has been achieved. When using replicas with
the larger inverse temperature β, the larger values of the
order parameter could be reached, although the optimiza-
tion process was then slower. After the transients, statis-
tical averaging of the order parameter over the ensemble
with the Gibbs distribution has been performed, according
to Eq. (4).

In Fig. 1(a), the averaged order parameter R is displayed
as a function of the connectivity p for several different in-
verse temperature β. The solid circle symbols show the

averaged order parameter corresponding to the replica with
β0 = 0, i.e., for an infinitely high temperature. We see
that the averaged order parameter increases with the net-
work connectivity p even if the networks are produced by
only random rewiring. The open circles show the aver-
age order parameters for the ensemble corresponding to the
replicas with the lowest inverse temperature βM . Generally,
greater order parameters are obtained by running evolution
at higher inverse temperatures β at any network connec-
tivity p. At each connectivity p, the order parameter is
gradually increased with increasing β and is approximately
saturated at βM . This means that, even if one further in-
creases β, only slight improvements of the averaged order
parameter can be expected. Thus, the networks sampled
by the replica with the largest inverse temperature βM are
already yielding a representative optimal ensemble.

Figure 1(b) shows, depending on the network connec-
tivity p, the ratio RβM/Rβ0 of the averaged order parameters
sampled by the optimal network ensemble with βM to those
obtained for the ensemble with purely random rewiring.
Since there is no room for the improvement of the order pa-
rameter when the number of links is small, the ratio tends to
unity as the connectivity p is decreased. On the other hand,
when p = 1, global coupling is realized, for which, under
the chosen coupling strength, full synchronization occurs.
As evidenced by this figure, the difference between the syn-
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chronization capacities of the optimized and random net-
works is most pronounced at the intermediate connectivi-
ties p.

3.2. Architectures of Synchronization-Optimized Net-
works

When the connectivity p is small, typical structure
of synchronization-optimized networks usually represent
chain fragments. At a higher connectivity, the network be-
comes more complexly organized.

To statistically characterize the architecture of con-
structed networks, ensemble averages of their adjacency
matrices over the Gibbs ensemble, i.e.,

wβ =
∑

w
w exp(βR(w))/Z(β), (5)

for different connectivities p were computed for β = βM ,
as shown in Fig. 2. Clearly, the optimal network struc-
ture is changing with the number of links. When the num-
ber of links is small, the elements of the mean adjacency
matrix, obtained by averaging over many realization from
the synchronization-optimized ensemble, are large near the
diagonal. Hence, elements with close natural frequency
tend to connect and form a chain fragment. Moreover,
oscillators with the natural frequencies near the center of
the interval are often connected. Increasing the number
of links, the network becomes more complicated and off-
diagonal elements begin to dominate instead. The network
with the larger p tends to have interlaced structures, seen
in Figs. 2(b) and 5(c), where the oscillators with roughly
opposite natural frequencies are coupled.

4. Summary

We have designed synchronization-optimized networks
with a fixed number of links for a heterogeneous oscilla-
tor population. This has been done by using the Markov
chain stochastic Monte Carlo method complemented by the
replica exchange algorithm. A transition from the linear
to bipartite-like networks has been found under increasing
the number of links. At low connectivity, synchronization-
optimized networks typically represent small chains con-
necting oscillators with close natural frequencies. As the
number of links increases, the networks become interlaced
and oscillators with opposite natural frequencies tend to be
connected. Therefore, synchronization-optimized network
begin to resemble bipartite graphs.
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