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Abstract– Effects of external noise on the duration and 

correlations of oscillations in ring networks of 
unidirectionally coupled neurons are studied. Changes in 
the duration of the unstable transient oscillations due to the 
noise are derived with a kinematical model of traveling 
waves in the networks. The duration of oscillations 
occurring from fixed initial conditions increases in the 
intermediate strength of the noise. Further, positive 
correlations appear in variations in the periods of stable 
oscillations in the networks of ring oscillator type.  
 
1. Introduction 

 
Recently, it was shown that long lasting transient 

oscillations occur in ring networks of unidirectionally 
coupled neurons in computer simulation [1 - 3] and circuit 
experiments [4]. The duration of the transient oscillations 
increases exponentially as the number of neurons in the 
networks. Such an exponential dependence of transient 
time on system size has been observed in several systems, 
e.g. [5]. Such systems never reach asymptotically stable 
states in a practical time and transient states may play an 
important role in their function, e.g. signal processing in 
nervous systems. It is thus of wide interest in the field of 
nonlinear dynamical systems.  

In this study, effects of external noise on the 
oscillations in the ring neural networks are examined. In 
Sect. 2, the model networks and the mechanism of the 
transient oscillations are explained. Changes in the 
duration of the transient oscillations due to the noise are 
derived with a kinematical model of the traveling waves 
in the networks in Sect. 3. Correlations and power spectra 
of variations in the periods of stable ring oscillators are 
also shown in Sect. 4.  

 
2. Ring Neural Networks with External Noise  

 
The following ring networks of neurons are considered.  
 

 dxn(t)/dt = -xn(t) + f(xn-1(t)) + σxnn(t)  (x0 = xN,  1≤n≤N)  
 

  f(x) = tanh(gx)    (g > 1)  
 

  E{nn(t)} = 0,  E{nn(t)nn’(t’)} = δn,n’·δ(t - t’)   (1)  
 

where xn is the state of the nth neuron, N is the number of 
neurons, f(x) is the output function of the neurons, g is the 
coupling gain. The neurons are unidirectionally coupled 

and the output of the Nth neuron is fed backed into the 
first neuron. Gaussian white noise nn(t) with the intensity 
σx is added to each neuron independently.  

The network has a pair of the non-zero steady points: 
(x1, x2, · · ·,  xN ) = ±(xp, xp, · · ·,  xp), xp = f(xp) in the 
absence of noise. It has been shown that it takes a long 
time for the system to reach one of the steady states when 
the number of neurons is large, during which the states of 
neurons oscillate [1 - 4]. In the transient states, the 
neurons are divided in two blocks in which the signs of 
their states are the same and the boundaries propagate in 
the direction of the couplings, e.g. (x1, x2, · · ·,  xN ): (+, +, 
+, · · ·, +, -, -, -, · · ·, -) → (-, +, +, · · ·, +, +, -, -, · · ·, -) → 
(-, -, +, · · ·, +, +, +, -, · · ·, -). The transient oscillations are 
such traveling waves of the boundaries of the blocks. The 
velocities of the boundaries depend exponentially on the 
block length as will be shown in Sect. 3. It then takes an 
exponentially long time until the two blocks merge so that 
the network reaches one of the steady states.  

 
3. Changes in Duration of Transient Oscillations  

 
A kinematical model of the traveling boundaries of two 

blocks in the network in the absence of noise is derived as 
follows [6]. Consider the state xn-1 of the n-1st neuron, and 
let t2j be the time at which the state xn-1 changes from 
positive to negative and t2j+1 be the time at which the state 
xn-1 changes from negative to positive (j ≥ 0). That is, the 
two boundaries in the network pass the n-1st neuron at t2j, 
t2j+1 alternately. We here consider the boundary changing 
from positive to negative sign. The other one can be dealt 
with in a similar way. When the coupling gain g is large (g 
» 1), the output function f(x) is approximated by the sign 
function (step function). Then the state of the nth neuron 
changes as follows.  

 

dxn/dt = -xn - 1    (t2j ≤ t < t2j+1)  
 

xn(t) = exp(-(t - t2j))(xn(t2j) + 1) - 1   (t2j ≤ t < t2j+1)  (2)  
 

The propagation time ∆t of the boundary from the n-1st to 
the nth neuron is obtained with xn(t2j + ∆t) = 0.  

 

∆t = log(1 + xn(t2j))  
 

     = log[1 + exp(-(t2j - t2j-1))(xn(t2j-1) - 1) + 1]  
 

     = log[2 - 2exp(-(t2j - t2j-1))  
        + exp(-(t2j - t2j-2))(xn(t2j-2) + 1)]   (3)  
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We can neglect the second exponential term since its value 
is exponentially smaller than the first one. The 
propagation time decreases as the interval to the forward 
boundary (the length of the forward block) decreases.  

The noise term σxnn(t) in Eq. (1) gives random 
variations in the propagation time. They are evaluated 
with the first passage time (FPT) tp of the Ornstein-
Uhlenbeck (OU) process.  

 

dx/dt = -a(x) + σxn(t)    (a(x) = -x)  
 

  E{n(t)} = 0,  E{n(t)n(t’)} = δ(t - t’)  
 

x(0) = xn(t2j) + 1 ≈ 2,    x(tp) = 1    (4)  
 

where it is assumed that the numbers of neurons in the 
blocks are large and the neuron fully reaches the steady 
state after the previous passage of the boundary (xn(t2j) ≈ 
xp ≈ 1). The mean m(tp) and variance σ2(tp) of the FPT are 
given by [7]  
 

]dξπ(ξ))σ(dη)η(π[2))0(|)(;(
)0(

)( η

12∫ ∫ −=
x

tx

B

xpp
p

xtxtm  

2

)0(

)( η

122

))0(|)(;(

]dξ)π(ξ)σ/()ξ|)(;(dη)η(π[4)(σ

xtxtm

txtmt

pp

x

tx

B

xppp
p

−

= ∫ ∫ −

 

∞==−= ∫ Byay
x

y

x

),
σ

exp()dη
σ

)η(2exp()(π 2

2

2
 (5)  

 

Although these integrals are calculated numerically, the 
mean of the FPT tp is approximated by the value log2 in 
the absence of the noise, when the variance of the noise is 
small (σx

2 « 1). The variance can be estimated with the 
probability density function of x(t).  

 

f(x(t)| x(0)) = 1/((2π)1/2σp)·exp[-(x(t) - mt)2/(2σp
2)] 

 

mt = x(0)exp(-t),    σp
2 = σx

2/2·(1 - exp(-2t))   (6)  
 

The probability density function of the FPT is 
approximated by the Gaussian function with the same 
variance as Eq. (6) since the value of the slope of the 
trajectory at x(t) = 1 (t = log2) is minus one (d(2exp(-
t))/dt|t = log2 = -1). Hence we obtain  

 

m(tp) ≈ log2,      σ2(tp) ≈ 3/8·σx
2     (7)  

 

In fact, it can be shown that Eq. (7) agrees with the 
numerical integral of Eq. (5) for σx < 0.1. The propagation 
time of the boundary per neuron then becomes  

 

∆t ≈ log[2 - 2exp(-(t2j - t2j-1))] + ∆tp   
 

  ∆tp = tp - m(tp)      (8)  
 

Let b0 and b1 be the locations of the two boundaries, 
and let L be the length of the ring neuron network, i.e. the 
number of neurons (L = N). Further let l and L - l be the 
length (the number of neurons) of the blocks, i.e.  

 

l = b0 - b1      (b0 > b1)  
 

  = b0 - b1 + L   (b0 ≤ b1)    (9)  
 

The propagation velocity of the boundaries b0 and b1 is 
expressed by  

 

db0/dt ≈ 1/∆t2j = 1/[log(2 - 2exp(-(t2j - t2j-1))) + ∆tp, 0]  
 

db1/dt ≈ 1/∆t2j+1 = 1/[log(2 - 2exp(-(t2j+1 - t2j))) + ∆tp, 1]  
       (10)  
 

Finally we approximate the intervals t2j - t2j-1 and t2j+1 - t2j 
by (L - l)∆t and l∆t with ∆t = log2, respectively, since the 
difference in them only appear in double exponential 
terms. By subtracting the second equation from the first 
equation in Eq. (10), we then obtain the differential 
equation for the block length l.  

 

dl/dt = db0/dt - db1/dt  
 

     = 1/[log2 + log(1 - exp(-log2·(L - l))) + ∆tp, 0]  
        - 1/[log2 + log(1 - exp(-log2·l)) + ∆tp, 1]  
 

     ≈ 1/(log2)2·(exp(-log2·(L - l)) - exp(-log2·l)) + σln(t)  
 

σl
2 = 2σ2(tp)/(log2)4 = 3/(4(log2)4)·σx

2   (11)  
 

The velocity of the boundary increases as the forward 
block length decreases and the two boundaries end up by 
colliding. The oscillation then ceases.  

The duration T of the transient oscillations in the 
presence of noise is dealt with the FPT problem of the 
stochastic differential equation Eq. (11) with l(T) = 0 or L. 
The mean m(T(l0)) and variance σ2(T(l0)) of the FPT 
beginning from the initial block length l0 are then obtained 
with Eq. (5) by letting  

 

a(l) = 1/(log2)2·[exp(-log2·(L- l)) - exp(-log2·l)], σx = σl  
 

x(0) = l(0) = l0,    x(tp) = l(T) = 0,    B = L/2   (12)  
 

where we use a reflecting boundary at l = L/2 owing to the 
symmetry of the system since the expression is simpler 
than that with both absorbing boundaries at l = 0 and L. 
Finally we need the following modification owing to the 
difference between the propagation time with f(x) = 
tanh(gx) (g = 10.0) and with the sign function. In fact, the 
duration in the absence of the noise in the computer 
simulation is as follows.  

 

T(l0 = 15) ≈ 28200    (f(x) = tanh(gx), g = 10.0)  
 

                 ≈ 22800    (f(x): sign function)   (13)  
 

The values of the integral must be multiplied by this ratio 
(≈ 1.24).  

Figure 1 shows the mean m(T(l0)) of the duration of the 
transient oscillations in the network with g =10.0, N = 40 
and l0 = 15. Numerical integral of Eq. (5) with Eq. (12) 
multiplied by 1.24 is plotted with a solid line. The mean 
of a thousand transient oscillations obtained with 
computer simulation of Eq. (1) by the simple Euler 
method with the time step 0.01 under the following initial 
condition are plotted with closed circles.  

 

xn = -1   (1 ≤ n ≤ l0),     xn  = 1    (l0 < n ≤ N)  (14)  
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The mean duration increases in the intermediate noise 
strength. This is never seen in the simple OU process and 
is of particular interest. The approximation by the FPT of 
Eq. (11) agrees with the simulation results. The decreases 
of the FPT at small noise strength (σx ≈ 0.001) may be an 
artifact due to the instability of the numerical integral 
since they do not appear in the simulation.  

When the number of neurons is large (N = L » 1), the 
FPT problem of simpler form is given by letting exp(-
log2·(L - l)) be zero in Eq. (11).  

 

dl/dt = -1/(log2)2·exp(-log2·l) + σln(t)    (15)  
 

It can be shown that the FPT calculated with this equation 
(a(l) = -1/(log2)2·exp(-log2·l)) hardly differs from that 
with Eq. (11) when N = 40 and agrees with the simulation 
results. An intuitive explanation for the increase in the 
duration due to the noise is as follows. The FPT of Eq. 
(15) in the absence of the noise is given by T(l0) = 
log2·(2l0 - 1). The ratio of the increase T(l0 + ∆l) - T(l0) 
due to a small positive fluctuation ∆l in l0 and the decrease 
T(l0) - T(l0 - ∆l) due to a negative fluctuation -∆l is 2∆l and 
is always larger than one. Then the fluctuations due to the 
noise tend to increase the FPT. In the simple OU process, 
the deterministic term is linear and the noise always 
decreases the FPT. The increase in the duration of the 
transient oscillations is due to the nonlinear exponential 
terms in Eqs. (11) and (15).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.  Mean duration m(T(l0)) of the transient oscillations 
vs. SD σx of the noise.  

 
The peak of the mean duration moves toward large 

noise strength and the value decreases as the length l0 of 
the initial block decreases. Numerical integrals of Eq. (5) 
with Eq. (12) for l0 = 12 - 14 are also plotted with dashed, 
dotted and dash-dotted lines, respectively, in Fig. 1. When 
starting with l0 = N/2, the oscillations never cease in the 
absence of the noise since the velocities of the two 
boundaries are the same. The duration then monotonically 
decreases as the noise strength increases. When the initial 
states of neurons are zero or randomly given, the mean 
duration of the transient oscillations is approximated by 
the integral of T(l0)/N over 0 ≤ l0 ≤ N since the length of 
the initial blocks is made uniformly randomly. The 
duration for the initial block length close to N/2 (l0 ≈ N/2) 

mainly contributes to it and it can be shown that the mean 
duration monotonically decreases as the noise strength.  

 
4. Correlations in Periods of Ring Oscillators   

 
When the number of neurons is odd (N = 2M + 1) and 

the coupling gain is negative and less than the Hopf 
bifurcation point (g < -1/cos(π/N)), the network is 
equivalent to a ring oscillator and shows stable 
oscillations [8]. There is one inconsistency in the signs of 
the states of neurons, e.g. (+, +, -) for N = 3, and it rotates 
in the network as (+, +, -) → (-, +, +) → (+, -, +). We 
consider variations in half periods of the stable 
oscillations caused by the noise. The half period is the 
interval of the passing time of the successive 
inconsistencies at one neuron and the period of the 
oscillations is its double.  

The propagation time of the inconsistency is derived in 
a similar way to Sect. 3. The half period Tm of the stable 
oscillations is given by the following equation.  

 

xm = -(xm + 1)exp(-Tm) + 1     (xm > 0)  
 

∆tm = log(xm + 1),   Tm = N∆tm      (16)  
 

where ∆tm is the propagation time of the inconsistency per 
neuron in the absence of the noise. The propagation time 
∆tj of the jth passing of the inconsistency is given by  

 

∆tj = log(2 - (| x(tj-1)| + 1)exp(-Tj)) + σtnj(t)  
 

      ≈ log(2 - (xm + 1)exp(-Tj)) + σtnj(t)  
 

      ≈ log2 - exp(∆tm)/2·exp(-Tj) + σtnj(t)   
 

σt
2 ≈ σx

2/2·(1 - exp(-2∆tm))  
 

Tj = tj - tj-1       (17)  
 

Then the changes in the half period Tj at the location l in 
the network is approximated as  

 

dTj(l)/dl = d(tj - tj-1)/dl ≈ ∆tj - ∆tj-1  
 

           = exp(∆tm)/2·(-exp(-Tj) + exp(-Tj-1)) + σt(nj - nj-1)  
 

           ≈ β(Tj - Tj-1) + σt(nj - nj-1)  
 

β = exp(-(N - 1)∆tm)/2  
 

Tj(0) = Tj-1(L)  (L = N)    (18)  
 

where nj is the white noise along tj. Following [9], the z 
transform ZT of Tj is given by  

 

dZT(l)/dl = β(1 - z-1)ZT(l) + (1 - z-1)Zn(l)  
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ZT(0) = z-1ZT(L)      (19)  
 

Hence the power spectrum S(ω) of Tj is obtained as  
 

S(ω) = E{|ZT(L)|2 z = exp(iω)}  
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        = σt
2/β·(exp(2βL(1 - cos(ω))) - 1) 

           /[1 + exp(2βL(1 - cos(ω)))  
              - 2exp(βL(1 - cos(ω)))cos(ω - βLsin(ω))]  (20)  
 

The power spectrum increases in the low frequency region 
owing to the apparent interaction between the successive 
half periods since S(0) = σt

2L/(1 - βL)2 is larger than S(π) ≈ 
σt

2L and S(ω) = σt
2L for β = 0.  

When |βL| < 1, a sequence of the half periods is 
approximated by the first-order autoregressive (AR) 
process as follows.  

 

Tj(l) = tj(L) - tj-1(0) =  lnlT jtj

L
d))(β(

0
σ+∫  

        ≈ βL/2·(Tj(0) + Tj(L)) + σTnj  
 

        = φ1Tj-1(0) + σTnj  
 

S(ω) = σT
2/(1 - 2φ1cos(ω) + φ1

2)   
 

         φ1 = βL/(2 - βL),     σT
2 = σt

2L/(1 - βL/2)2   (21)  
 

where the trapezoidal rule is used for the estimation of the 
integral. The parameter φ1 has the positive value and the 
autocorrelation function E{(Tj(l) - Tm)(Tj-k - Tm)} of the 
sequence is given by σT

2/(1 - φ1
2)·φ1

k.  
Figure 2 shows the power spectrum of the sequences of 

the half periods in the inhibitory network (g = -10.0) of 
three neurons (N (= L) = 3) in the presence of noise of σx 
= 0.1. An estimate with FFT of the results of computer 
simulation is plotted with closed circles. Equations (20) 
and (21) are also plotted with solid and dashed lines, 
respectively, where the values of the parameters are:  
xm = (-1 + 51/2)/2 ≈ 0.618,  ∆tm = log((1 + 51/2)/2) ≈ 0.481,  
Tm = log(2 + 51/2) ≈ 1.44,  β = (3 - 51/2)/4 ≈ 0.19,  
σt = (-1 + 51/2)1/2/2·σx ≈ 0.056,  r ≈ 0.40,  σT ≈ 0.13.  
The approximation with Eqs. (20) and (21) agrees about 
with the simulation results though the correlations are 
slightly large.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.  Power spectrum S(ω) of a sequence Tj of the half 
periods in the ring oscillator of three neurons.  
 

These correlations occur in the interspike intervals of a 
spike propagating in a ring of excitable media [9]. The 

propagation time of the spike increases as the interspike 
interval decreases in the refractory period of the excitable 
media. The value of the coefficient β is then negative and 
the interspike intervals become negatively correlated. It is 
of interest that the effects of the interaction in the ring are 
opposite to those of the interspike intervals of a spike train 
propagating in a line of excitable media, e.g. a nerve fiber. 
The interaction then smooths the interspike intervals and 
cause positive correlations when β < 0. Similarly to a 
spike train in the nerve fiber, when an input is added to 
one end of an open chain of the sigmoidal neurons, signals 
switching positive and negative signs can be generated 
and propagated toward the other end. Then the interaction 
with β > 0 may increase variations in the intervals of 
switching and make them negatively correlated, which 
results in a modulation of the signals.  

 
5. Conclusion  

 
It was shown that the duration of the transient 

oscillations in the unidirectionally coupled ring neural 
networks increases in the intermediate noise strength on 
the basis of the FPT problem of the kinematical model of 
the traveling waves. This noise-induced resonance like 
phenomenon is due to the exponential dependence of the 
velocities of the traveling waves on the forward block 
length of the neurons.  

Further, it was shown that the noise causes positive 
correlations in the sequences of the periods of the stable 
oscillations in the network of ring oscillator type. The 
power spectrum is expressed with not rational but 
exponential functions of frequency while the sequences 
can be approximated by the 1st-order AR process.  
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