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Abstract—A generalized asynchronous digital spiking

neuron model that can be implemented by an asynchronous

sequential logic circuit is introduced. The model is the

most generalized version of asynchronous sequential logic

circuit based neurons, where the sensitivity of its vector

field to a stimulation input is generalized. It is clarified that

the GDN can exhibit various bifurcations observed in some

standard ODE neuron models.

1. Introduction

Various spiking neuron models suited for electronic cir-

cuit implementations have been proposed so far, where

there exist two major approaches: (i) an analog approach

that implements a nonlinear ordinary differential equation

(ab. ODE) in an analog nonlinear circuit [1–4], and (ii)

a digital approach that implements a numerical integra-

tion in a digital processor [5–7]. Recently, an alterna-

tive hardware-oriented neuron modeling approach has been

proposed, where a nonlinear dynamics of a neuron is mod-

eled by an asynchronous cellular automaton that is imple-

mented by an asynchronous sequential logic circuit [8–11].

In this paper, a generalized asynchronous digital spiking

neuron model (ab. GDN) is introduced, where the sensi-

tivity of its vector field to a stimulation input is general-

ized. The GDN consists of registers, logic gates, and re-

configurable wires, where the pattern of the wires is a con-

trol parameter that determines the nonlinear dynamics of

the GDN. In this paper, it is clarified that the GDN can

exhibit various bifurcations (e.g., supercritical Hopf bifur-

cation, saddle-node bifurcation) that are also observed in

some standard ODE neuron models [12]

2. Generalized asynchronous digital spiking neuron

In this section, a generalized asynchronous digital spik-

ing neuron model (ab. GDN), whose diagram is shown in

Fig. 1, is introduced. The GDN has the following four reg-

isters. (1) The membrane register is an N-bit bi-directional

shift register having an integer state V ∈ ZN ≡ {0, · · · ,N −

1} encoded by the one-hot coding manner, where “≡” de-

notes “is defined by”. From a neuron model viewpoint,

the state V can be regarded as a membrane potential. (2)

The recovery register is an M-bit bi-directional shift regis-

ter having an integer state U ∈ ZM ≡ {0, · · · ,M − 1} en-

coded by the one-hot coding manner. From a neuron model
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Figure 1: Generalized asynchronous digital spiking neuron

model (ab. GDN).

viewpoint, the state U can be regarded as a recovery vari-

able. (3) The membrane velocity counter is a K-bit register

having an integer state P ∈ ZK ≡ {0, · · · ,K − 1} encoded

by the thermometer coding manner. The state P controls

a velocity of the membrane potential V . (4) The recovery

velocity counter is a J-bit register having an integer state

Q ∈ ZJ ≡ {0, · · · , J − 1} encoded by the thermometer cod-

ing manner. The state Q controls a velocity of the recovery

variable U. The states V , U, P and Q are clamped to the

range [0,N−1], [0,M−1], [0,K−1] and [0, J−1], respec-

tively. As shown in Fig. 1, the registers and the counters

are connected to each other via the following two memo-

ryless units. (i) The vector field unit consists of logic gates

and reconfigurable wires. This unit determines the char-

acteristics of a vector field of the states (V,U) as its name

implies. (ii) The reset value unit consists of logic gates and

reconfigurable wires. From a neuron model viewpoint, this

unit determines values to which the states (V,U) are reset

when the GDN fires, as its name implies. The GDN accepts

a periodic internal clock Clk(t) described by

Clk(t) =















1 if t (mod 1) = 0,

0 otherwise,

where t ∈ [0,∞) is a continuous time. In the next sub-

section A, autonomous behaviors of the GDN (i.e., behav-

iors when no stimulation input spike-train S tm(t) is ap-

plied) are investigated. After that, in the subsection B, non-

autonomous behaviors of the GDN (i.e., behaviors when a

stimulation input spike-train S tm(t) is applied) are investi-

gated.
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Figure 2: A phase plane and state transitions. V-nullcline

(U-nullcline) is a border between DV ∈ {−1, 0} and DV = 1

(DU ∈ {−1, 0} and DU = 1). The bit lengths of the registers

and the counters are N = M = K = J = 16. The parame-

ters are Γ = (7, 0.3, 0.2, 3, 0.1, 16, 0.5, 0.3, 0) defined in (5).

A periodic stimulation input spike-train S tm(t) with a fre-

quency 0.312 via the synaptic weight W = 1 is applied to

the GDN.

2.1. Autonomous behaviors

Let us begin with defining the following subset L in the

state space ZN × ZM (see also Fig. 2).

L ≡ {(V,U)|V = N − 1,U ∈ ZM} ⊂ ZN × ZM .

From a neuron model viewpoint, L can be regarded as a

firing threshold.

First, let us consider the case of (V,U) < L. In this case,

the vector field unit shown in Fig. 1 triggers the transi-

tions of the states (P,Q) of the velocity counters and the

states (V,U) of the registers by generating signals (sV , sU) ∈

{0, 1}2 and (δV , δU) ∈ {−1, 0, 1}2 as follows.

P(t+) =



























P(t) + 1 if sV (t) = 0,Clk(t) = 1,

0 if sV (t) = 1,Clk(t) = 1,

P(t) otherwise,

Q(t+) =



























Q(t) + 1 if sU(t) = 0,Clk(t) = 1,

0 if sU(t) = 1,Clk(t) = 1,

Q(t) otherwise,

V(t+) =















V(t) + δV if Clk(t) = 1,

V(t) otherwise,

U(t+) =















V(t) + δV if Clk(t) = 1,

V(t) otherwise,

(1)

where the velocity counters accept the internal clock Clk(t)

and the signals (sV , sU ), and the registers accept the signals

(δV , δU) from the vector field unit. The signals (sV , sU) and

(δV , δU) are generated as follows.

sV =















1 if P ≥ Ph(V,U),

0 if otherwise,
, sU =















1 if Q ≥ Qh(V,U),

0 if otherwise,

δV =















sgn(F (V,U)) if P ≥ Ph(V,U),

0 otherwise,

δU =















sgn(G(V,U)) if Q ≥ Qh(V,U),

0 otherwise,

where the signum function sgn(x) gives the sign of a real

number x and the functions F (V,U),G(V,U), Ph(V,U) and

Qh(V,U) are defined as follows.

F (V,U) = N(γ1 (V/N − γ2)2
+ γ3 − U/M)/λ,

G(V,U) = µM(γ4 (V/N − γ2) + (γ3 + γ5) − U/M)/λ,

Ph(V,U) = ⌊|F −1(V,U)|⌋−1,

Qh(V,U) = ⌊|G−1(V,U)|⌋−1,

where (γ1, γ2, γ3, γ4, γ5, λ, µ) are parameters, the func-

tion ⌊x⌋ gives the integer part of a real number x, and

Ph(V,U),Qh(V,U) are clamped to the range [0,K − 1],

[0, J − 1], respectively.

Second, let us consider the case of (V,U) ∈ L. In this

case, the reset value unit shown in Fig. 1 triggers the tran-

sitions of the states (P,Q) of the velocity counters and the

states (V,U) of the registers by generating integer signals

(A, B) ∈ ZN ×ZM encoded by the one-hot coding manners,

as follows.

(P(t+),Q(t+),V(t+),U(t+)) =














(0, 0, A(t), B(t)) if (V,U) ∈ L,Clk(t) = 1,

(P(t),Q(t),V(t),U(t)) otherwise,

(2)

where the signals (A, B) are generated as follows.

A = ⌊ρ1N⌋, B(U) = U + ⌊ρ2M⌋,

where (ρ1, ρ2) are parameters and A, B(U) are clamped to

the range [0,N − 1], [0,M − 1], respectively. Repeating the

firing resets, the GDN generates the following firing spike-

train Y(t).

Y(t) =















1 if (V(t),U(t)) ∈ L,Clk(t) = 1,

0 otherwise .
(3)

2.2. Non-autonomous behaviors

Let us now apply the following stimulation input spike-

train S tm(t) to the GDN.

S tm(t) =















W if t = t1, t2, · · · ,

0 otherwise,

where t = t1, t2, · · · are input spike positions and W ∈

{−1, 1} is a parameter. From a neuron model viewpoint, the

stimulation input spike S tm(t) can be regarded as a stimu-

lation input and W can be regarded as a synaptic weight. A

post-synaptic stimulation spike S tm = W induces a transi-

tion of the membrane potential V as follows.

V(t+) =















V(t) +W if S tm(t) = W,

V(t) otherwise .
(4)

Fig. 2 shows basic non-autonomous behaviors of the GDN.

As a result, the dynamics of the GDN is described by

(1)–(4), and is characterized by the following parameters.

N,M,K, J,Γ = (γ1, γ2, γ3, γ4, γ5, λ, µ, ρ1, ρ2). (5)
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Figure 3: Definitions of the subset X in Eq. (6) and its

co-ordinate X in Eq. (7).

3. Bifurcation Diagrams

In this section, it is shown that the GDN can exhibit vari-

ous bifurcations . For simplicity, we focus on the following

periodic stimulation input spike-train S tm(t).

S tm(t) =















W if (t + θ0) (mod f −1
S

) = 0,

0 otherwise,

where fS is an input frequency, θ0 ∈ [0, f −1
S

) is an initial

input phase, and a post-synaptic stimulation I to the GDN

is defined as I = fS ×W. To create bifurcation diagrams, let

us define the following subset X of the state space ZN ×ZM

as shown in Fig. 3.

X ≡



















( j, i)

∣

∣

∣

∣

∣

∣

∣

∣

( j, i) ∈ ZN × ZM , DU( j, i) , 1,

( j, i) has at least one 8-neighbor

(l, k) at which DU(l, k) = 1



















. (6)

As shown in Fig. 3, the subset X is indexed by an integer

X ∈ ZX ≡ {0, 1, · · · , χ} (7)

encoded by the chain coding manner, where χ is an inte-

ger determined by the parameters (N,M,K, J,Γ). Fig. 4

shows the bifurcation diagrams for X with respect to a post-

synaptic stimulation I.

In Fig. 4(a1), the left plots (arrow α1) correspond to sta-

ble equilibrium sets (i.e., resting states) and the right plots

(arrow α2) correspond to stable limit cycle sets (i.e., spik-

ing states). In Fig. 4(a2), the two left plots (arrow α3)

correspond to unstable limit cycle sets and the right plots

(arrow α4) correspond to unstable equilibrium sets. When

the post-synaptic input I is a small value, there exists the

stable equilibrium set (arrow α1) and it is surrounded by

the unstable limit cycle set (arrow α3). When I increases to

I1, the limit cycle set converges to the equilibrium set and

the equilibrium set is unstabilized (arrow α4). This bifurca-

tion mechanism has qualitative similarities to a subcritical

Hopf bifurcation [13].

In Fig. 4(b1), the two left plots (arrow α5) correspond

to stable limit cycle sets (i.e., spiking states) and the right

plots (arrow α6) correspond to stable equilibrium sets (i.e.,
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Figure 4: Bifurcation diagrams with for X respect to a post-

synaptic stimulation I. (a1)–(d1) show the stable periodic

points and (a2)–(d2) show the unstable periodic points.

The bit lengths are M = N = K = J = 64. (a1)(a2)

The parameters are Γ = (7, 0.3, 0.2, 3, 0.1, 64, 0.5, 0.3, 0).

(b1)(b2) The parameters are Γ = (7, 0.3, 0.5,−2.53,−0.05,

64,−0.33, 0.3,−0.04). (c1)(c2) The parameters are Γ =

(7, 0.3, 0.2,−0.5, 0.1, 64, 4, 0.37, 0.35). (d1)(d2) The pa-

rameters are Γ = (7, 0.3, 0.2,−0.5, 0.05, 64, 4, 0.25, 0.4).

resting states). In Fig. 4(b2), the plots (arrow α7) corre-

spond to unstable equilibrium sets. When the post-synaptic

input I is a small value, there exists the unstable equilib-

rium set (arrow α7) and it is surrounded by the stable limit

cycle set (arrow α5). When I increases to I2, the limit cy-

cle set converges to the equilibrium set and the equilibrium

set is stabilized (arrow α6). This bifurcation mechanism

has qualitative similarities to a supercritical Hopf bifurca-

tion [13].

In Fig. 4(c1), the left plots (arrow α8) correspond to sta-

ble equilibrium sets (i.e., resting states) and the right plots
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(arrow α9) correspond to stable limit cycle sets (i.e., spik-

ing states). In Fig. 4(c2), the plots (arrow α10) correspond

to unstable equilibrium sets. When the post-synaptic in-

put I is a small value, there exist the stable equilibrium set

(arrow α8) and the unstable equilibrium set (arrow α10).

When I increases to I3, the two eqilibrium sets collide and

disappear. This bifurcation mechanism has qualitative sim-

ilarities to a saddle-node bifurcation [13]. When the post-

synaptic input I is a large value, there exist the stable limit

cycle (arrow α9). When I decreases to I4, the limit cycle

set collides with the unstable equilibrium set (arrow α10)

and disappears. This bifurcation mechanism has qualitative

similarities to a saddle homoclinic orbit bifurcation [13].

In Fig. 4(d1), the left plots (arrow α11) correspond to sta-

ble equilibrium sets (i.e., resting states) and the right plots

(arrow α12) correspond to stable limit cycle sets (i.e., spik-

ing states). In Fig. 4(d2), the plots (arrow α13) correspond

to unstable equilibrium sets. When the post-synaptic in-

put I is a small value, there exist the stable equilibrium set

(arrow α11) and the unstable equilibrium set (arrow α13).

When I increases to I5, the two eqilibrium sets collide and

disappear. At the same instant, the stable limit cycle set

(arrow α12) appears. This bifurcation mechanism has qual-

itative similarities to a saddle-node on invariant circle bi-

furcation [13].

4. Conclusion

The generalized asynchronous digital spiking neuron

model (ab. GDN) whose dynamics is described by the

asynchronous cellular automaton is proposed, where the

sensitivity of its vector field to the stimulation input is gen-

eralized. It has been shown that the GDN can exhibit var-

ious bifurcations observed in some standard ODE neuron

models. These properties will be keys to reproduce re-

sponses of biological and model neurons. Future problems

include: clarification of relationships between the parame-

ters of the GDN and experimentally measurable parameters

of biological neurons, development of an on-chip learning

algorithm of the GDN, and development of a neuroscience-

aware network of GDNs. The authors would like to thank

Professor Toshimitsu Ushio of Osaka University for valu-

able discussions. This work is partially supported by the

Center of Excellence for Founding Ambient Information

Society Infrastructure, Osaka University, Japan, and KAK-

ENHI (21700253).
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