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Abstract—When a common non-periodic signal injects
to non-linear oscillators, it exhibits synchronization phe-
nomena. This phenomena is called as an injection locking
for some oscillators against the external force. In general,
it supposes that all oscillators are identical. Therefore, the
discussion of the case where the oscillators are not iden-
tical is not sufficient. Then, we investigate a relationship
between individual difference and synchronization. We ex-
periment with the relaxation oscillator circuit having indi-
vidual differences.

1. Introduction

When a common noise is injected into oscillators, the
oscillators exhibit synchronization phenomena[1]. Such
phenomenon is called a noise-induced synchronization.
Teramae and Tanaka analyzed the noise induced synchro-
nization phenomena numerically and theoretically when a
white noise is induced into the oscillators[1]. Also, the
synchronization phenomena are observed too in the case
where the colored noise is induced[2][3]. The noise in-
duced synchronization is confirmed by an implementation
circuit[4][5].

The noise induced synchronization phenomenon is real-
ized that the oscillators are driven by the common noise
signal. In other words, the oscillators are not dependent
on the initial value. In the precedence research, the syn-
chronization state of the oscillators is measured by Lya-
punov exponents[1][6][5]. However, if each oscillator has
some differences, the discussion of the synchronization is
not sufficient. Such differences prevent the oscillators syn-
chronization. To develop engineering applications by the
noise synchronization, we have to clarify the relationship
between the oscillator mismatching and the synchroniza-
tion.

In this article, we consider the effect of individual differ-
ence of oscillators. Our objective oscillator is a piecewise
linear relaxation oscillator that can be analyzed by exact
solution. Also, an implementation of the relaxation oscil-
lator is easily. By using such relaxation oscillator, we in-
vestigate the noise synchronization phenomena in the case
where each oscillator has parameter mismatching. By us-
ing the implementation relaxation oscillators, we observe

the oscillator state depending on the individual difference.
We develop the noise generator to apply the external force
to the oscillators. The generator can change the range of
the values that is a uniform distributed noise. By using this
generator, we investigate the effect of the variation of the
external force noise signal.

2. Relaxation oscillator with a time variant threshold

In order to clarify the synchronization phenomena of the
relaxation oscillators, when the common non-periodic ex-
ternal force is injected, we measure the synchronization
status. Figure 1 shows a circuit diagram of the relaxation
oscillator. The oscillator consists of a piecewise linear
bipolar hysteresis element. The threshold of hysteresis is
driven by a binary optical signal. The system injects the
external force by the optical signal in order to insulate be-
tween each oscillator circuit. This circuit is regarded as a
electric firefly (EFF)[7]. Therefore, this relaxation oscilla-
tor circuit is called an EFF in this article.

The circuit equations of the EFF are shown in the fol-
lowing equations.

C(R1 + R2) d
dt vc(t) = −vc(t) + vo(t),

vo(t) =

+E vc(t) < vs(t)
−E vc(t) > vw(t)

,
(1)

 vs(t) =

Ea1 u(t) is 1
Ea2 u(t) is 0

,

vw(t) = Eb,
(2)

{
a1 = −b = (VR4 + R5)/(R3 + R4 + R5)
a2 = (VR4 + VR5)/(R3 + R4 + VR5) , (3)

where, VR4 ∈ [0, 1k], VR5 ∈ [0, 100k] is the variable re-
sistor. vc(t) is a capacitor voltage, vo(t) denotes a binary
output voltage. These vc(t) and vo(t) are internal state vari-
able of the EFF. vs(t) and vw(t) are the upper threshold and
the lower threshold of the bipolar hysteresis, respectively.
vs(t) is changed by the external force u(t).

Here, we consider the following conversion.

τ =
t

RC
, x =

vc

E
, y =

vo

E
, S =

vs

E
, W =

vw

E
(4)
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Figure 1: EFF circuit diagram.

By using the above conversion, we derive the normalized
equation. The normalized equation is described by

d
dτ x(τ) = −x(τ) + y(τ),

y(τ) =

1 x(τ) < S (τ)
−1 x(τ) > W(τ)

,
(5)

 S (τ) =

a1 u(τ) is 1
a2 u(τ) is 0

,

W(τ) = b,
(6)

where, x(t) denotes a state variable of the relaxation oscil-
lator, y(t) denotes a bipolar hysteresis output. S (t) and W(t)
are threshold of the binary hysteresis. S (t) is time-variant
that is driven by a external force of u(t). EFF has three
threshold parameters a1, a2, and b.

u(t) is described by the following equation.

u(τ) =

0 τn ≤ τ < τn + rnhn

1 τn + rnhn ≤ τ < τn+1
, n ∈ N, (7)

τn+1 = hn + τn, (8)

where, u(τ) = 1 means the light injected state, and u(τ) = 0
is the light non-injected state. τn denotes a start timing of
the n-th pulse, hn > 0 denotes an interval of the n-th pulse,
and rn ∈ (0, 1) denotes a duty rate of the n-th pulse.

This oscillator has a long-period oscillation mode and a
short-period oscillation mode. These oscillation modes are
switched by the external force.

3. The response to non-periodic external force

In this section, we investigate the response of the re-
laxation oscillator, when a common non-periodic external
force is injected. The non-periodic external force is a pulse
waveform that has random period, and the duty rn of the
pulse is fixed to 0.5. The distribution of the random peri-
ods corresponds to the frequency distribution in the exter-
nal force.

Figure 2: Experimental system.

Figure 2 shows the experimental system. Our developed
signal generation circuit generates the common external
force. The signal generator is configured by the Arduino
Uno. The signal generator derives a light signal into the
EFF. The data logger (GRAPHTEC GL900-4) records the
oscillation states of EFFs and the external force signal. For
accurate measurements, each recording channel of the data
logger must be insulated each other. The used data logger
satisfies this requirement.

3.1. EFFs of small individual differences

In this section, we investigate the synchronization phe-
nomena when EFFs have small individual differences.

First, we measure the characteristics of EFFs where the
external force is a constant. In other words, u(τ) = 0 or
u(τ) = 1. Table 1 shows the measured oscillation period of
each EFF. In this table, ‘on’ denotes the oscillation period
of long-period oscillation mode, ‘off’ denotes the oscilla-
tion period of short-period oscillation mode. The oscilla-
tion period of each EFF will almost match.

We measure synchronization phenomena when a non-
periodic pulse is injected into EFFs. The pulse interval of
the non-periodic external force is driven by uniform distri-
bution random noise. The pulse interval τn is fluctuated as
the following equation.

hn = T + Uniform(−∆T, ∆T ), (9)

hn is a uniform distribution random number in the range
form T − ∆T to T + ∆T , and the expected value is T . ∆T
is varied from 0[ms] to 30[ms] in interval at 10[ms]. The
excepted period T is varied form 150[ms] to 300[ms] in
interval at 1[ms]. The data logger records the measurement
data. The sampling interval is 1[ms], and the measurement
time is 3[min].

Next, we calculate the temporal correlation coefficients
of the outputs to investigate the synchronization state. Fig-
ure 3 shows the temporal correlation coefficients between
each EFF and the external force. Figure 4 shows the tem-
poral correlation coefficient between each EFF. cci, j i, j ∈
{1, 2, 3, EF} denotes the temporal correlation coefficient
between i and j. If two signals are in-phase synchroniza-
tion state, the temporal correlation coefficient is 1. We con-
sider the relationship between the external force and each
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Table 1: Oscillation period (individual difference is small)

Oscillation period[ms]
on off

EFF1 250.1 200.2
EFF2 250.1 200.1
EFF3 250.0 200.0

EFF. Figure 3a is a case that the periodic external force is
injected. Each EFF and the external force are synchronized
when the period of the external force is from 200[ms] to
300[ms]. The synchronization range is narrow when ∆T
is large. We investigate the synchronization between each
EFF. Figure 4a shows the case where a periodic external
force is injected Each EFF is synchronized when the pe-
riod of the external force is from 200[ms] to 300[ms]; This
is consistent with the synchronization range of the exter-
nal force and each EFF. In addition, the synchronization
observed in the other range. The cause is that the EFF
driven by the periodic external force has multiple stable
states. Therefore, if each EFF has the same stable state,
EFF archives a synchronization. In addition, each EFF
has a stable state when the period of external force is from
200[ms] to 250[ms]. Therefore each EFF is synchronized
with each other in this case. If ∆T is large, the temporal
correlation coefficient increased. That is, when the varia-
tion of the external force is large, the synchronization can
be easily induced.

Results of the average period indicate that the EFF has
the same response to the external force. Almost synchro-
nization in this system is in-phase synchronization. The
in-phase synchronization range of EFF is large, when the
variance of the external force is large. In the case where
the individual difference of EFF is small, these observed re-
sults indicate that the variation in external force is affected
to induce in-phase synchronization.

3.2. EFFs of large individual differences

Next, we consider the case where the individual differ-
ence is large. First, we measure the characteristics of EFFs
where external force is constant. Table 2 shows the oscilla-
tion period of each EFF. Each EFF has a different oscilla-
tion period.

We inject the uniform distribution signal into the EFF
that has a large individual difference. ∆T is varied from
0[ms] to 30[ms] in interval at 10[ms]. The excepted period
T is varied form 150[ms] to 300[ms] in interval at 1[ms].
The data logger records the measurement data. The sam-
pling interval is 1[ms], and the measurement time is 3[min].

To investigate the synchronous state, we calculate the
temporal correlation coefficients of the output time series.
Figure 5 shows the temporal correlation coefficients be-
tween each EFF and the external force. Figure 6 shows the
temporal correlation coefficients between each EFF. The
correlation coefficients between each EFF and the external

Table 2: Oscillation period (individual difference is large)

Oscillation period[ms]
on off

EFF1 250.1 200.1
EFF2 255.2 205.1
EFF3 245.0 195.0

force are the same tendency as if the individual difference
is small. However, in-phase synchronization range of the
external force and the EFF is different for each EFF. The
synchronization range between each EFF is the only over-
lapping area of the synchronization range between each
EFF and the external force. If ∆T is large, the trend is
similar. In addition, when ∆T is large, the synchronization
range between each EFF becomes narrow. In other words,
the variation of the external forces interferes with the syn-
chronization. This situation is quite different from the case
where the individual difference is small.

The synchronization range is given by the overlap range
of all EFF and the external force in the case where the in-
dividual difference is large. In addition, the variation of the
external force interferes with the synchronization. There-
fore, the synchronization range becomes narrow.

4. Conclusions

In this article, we observed the synchronization phenom-
ena in the EFF whose threshold driven by the common non-
periodic external force. As a result, we have been con-
firmed the synchronization phenomena between the EFF
with the common non-periodic external force. In the case
where the individual difference is small, we confirmed that
the synchronization range is wide. In this case, the syn-
chronization range has been extended by the variation of
the external force. If the individual difference is large, the
synchronization range is narrow. In addition, the variation
of the external force affects to narrow the synchronization
range. Thus, the influence of the variations in the exter-
nal force is different from the individual differences of the
oscillators.

We will derive the synchronization condition theoreti-
cally in the future.
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Figure 3: Temporal correlation coefficient between each EFF and external force (individual difference is small).
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Figure 4: Temporal correlation coefficient between EFFs (individual difference is small).
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Figure 5: Temporal correlation coefficient between each EFF and external force (individual difference is small).
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Figure 6: Temporal correlation coefficient between EFFs (individual difference is small).
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