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Abstract- Properties of the duration of long lasting 
transient oscillations in ring networks of unidirectionally 
coupled sigmoidal neurons are derived with a kinematical 
model of traveling waves in the networks. The duration of 
the transient oscillations occurring from random initial 
conditions increases exponentially as the number of 
neurons. The distribution of the duration is approximated 
by a power-law function when the number of neurons is 
large.  
 
1. Introduction 

 
An exponential dependence of transient time on system 

size is of wide interest in the field of nonlinear dynamical 
systems [1 - 5]. In such systems, transient time from initial 
states to stable states increases exponentially as the size of 
systems. These systems never reach their asymptotically 
stable states in a practical time when the system size is 
sufficiently large. Their functions, e.g. information 
processing in the nervous systems, may proceed in the 
transient states, as has been pointed out in the references. 
The transient states thus play more important roles than 
the asymptotic states in actual systems.  

In this study we consider transient oscillations in ring 
networks of sigmoidal neurons. Although the model 
considered here is simple, it has been studied for recurrent 
neural networks [6] and as cyclic feedback systems [7]. It 
is then known that a discrete-time version of it has 
multiple stable orbits [8]. Further, it has been shown that, 
if delays exist, similar models cause various spatio-
temporal patterns [9, 10] and long lasting transient 
oscillations [11 - 13].  

When the number of inhibitory couplings is odd, the 
ring network is qualitatively the same as a ring oscillator 
which outputs stable rectangular waves. When the number 
of inhibitory couplings is even, on the other hand, it is 
known that the steady states are globally stable and stable 
oscillations never exist [6, 7, 13 - 15]. Recently, however, 
it was shown that the networks of even inhibitory 
couplings have oscillations lasting for a very long time 
[16 - 18]. Further, oscillations continuing about a 
thousand times before ceasing were observed in 
experiments on analog circuits [19].  

In the following, we derive a kinematical model of 
traveling waves in the ring neural networks. It is then 
shown that the duration of the transient oscillations 
increases exponentially as the number of neurons and is 
distributed in a power-law form.  

2. Ring Neural Network and Transient Oscillations  
 

 The following ring network of unidirectionally coupled 
neurons is considered.  
 
 τdxn/dt = -xn + f(xn-1)   (x0 = xN,  1 ≤ n ≤ N)  

 

  f(x) = tanh(gx)     (g > 1)    (1)  
 
where xn is the state of the nth neuron, N is the number of 
neurons, f(x) is the output function of the neurons, g is the 
coupling gain and τ is the time constant. The neurons are 
coupled to the adjacent neurons unidirectionally and their 
output is transmitted through the monotonically increasing 
nonlinear function f with the gain g. The network has a 
pair of the non-zero steady points.  

 
xn = xp = f(xp)    (1 ≤ n ≤ N)   
 

  xp → ±1 for |g| → ∞    (2)  
 

Although long lasting transient oscillations were shown 
originally in the networks of inhibitory couplings (g < -1) 
we use excitatory couplings (g > 1) for simplicity. In fact, 
the networks with an even number of neurons and 
negative couplings are equivalent to those of positive 
couplings by changing as x2m → -x2m (1 ≤ m ≤ N/2), g → -
g. Further, when there are both of excitatory and 
inhibitory couplings in the networks, they can be 
transformed into networks of all positive couplings if the 
number of inhibitory couplings is even by appropriately 
changing the signs of the states and the couplings.  

Figure 1 shows an example of temporal patterns in the 
states of neurons in the transient oscillations beginning 
from random initial states xn(0), in which black and white 
regions correspond to the states of positive and negative 
signs, respectively. After a short time the neurons are 
separated in two propagating blocks in which the states of 
neurons have the same signs. The transient oscillations are 
these traveling waves of the blocks. After a long transient 
time the two blocks merge and the oscillation ceases so 
that the neurons reach one of the steady states.  

 
 
 
 

 
 

Fig. 1.  Temporal patterns of transient oscillation.  
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3. Kinematical Model of Traveling Waves  
 
We derive a kinematical model of the traveling waves 

which correspond to the transient oscillations. Let two 
blocks of the same signs of the states of neurons be made 
in the network. Consider the state xn-1 of the n-1st neuron, 
and let t2j be the time at which the state xn-1 changes from 
positive to negative and t2j+1 be the time at which the state 
xn-1 changes from negative to positive (j ≥ 0). That is, the 
two boundaries of the two blocks in the network pass the 
n-1st neuron at t2j, t2j+1 alternately. We call the boundaries 
of 2jth and 2j+1st passing time the p-n and n-p boundaries, 
respectively. The input to the nth neuron changes its sign 
at this time. When the coupling gain is large (g » 1), the 
output function f(x) is approximated by the sign function 
(step functions). Then the state xn of the nth neuron 
changes as follows.  

 
τdxn/dt = -xn - 1    (t2j ≤ t < t2j+1)  

 

            = -xn + 1   (t2j+1 ≤ t < t2j+2)    (3)  
 

The solutions of Eq. (3) are given by  
 
xn(t) = exp(-(t - t2j)/τ)(xn(t2j) + 1) - 1      (t2j ≤ t < t2j+1)  

 

        = exp(-(t - t2j+1)/τ)(xn(t2j+1) - 1) + 1   (t2j+1 ≤ t < t2j+2)  
      (4)  
 
Let ∆t2j be the elapsed time by which the p-n boundary 

propagates from the neuron n - 1 to the neuron n, i.e. xn(t2j 
+ ∆t2j) = 0. The propagation time ∆t per neuron is 
expressed by  

 
∆t2j = τ·log(1 + xn(t2j))  

 

       = τ·log(1 + [exp(-(t2j - t2j-1)/τ)(xn(t2j-1) - 1) + 1)])  
 

 = τ·log(2 - 2exp(-(t2j - t2j-1)/τ)  
+ exp(-(t2j - t2j-2)/τ)(xn(t2j-2) + 1))   (5)  

 
The expression for the propagation time ∆t2j+1 of the n-p 
boundary is given in the same way. When the length of the 
blocks is large, we can approximate the propagation time 
by ∆t = τ·log2 since the intervals t2j - t2j-1 and t2j - t2j-2 in 
the exponential terms are large. The period of the 
oscillations is then about N∆t = τNlog2.  

  To obtain a closed form, we neglect the second 
exponential term in the right-hand side of Eq. (5) since it 
is exponentially smaller than the first exponential term 
owing to that the interval in the exponential is twofold. 
We then let b0 and b1 be the locations of the p-n and n-p 
boundaries, respectively, and let L be the length of the ring 
neuron network, i.e. the number of neurons (L = N). 
Further let l be the length (the number of neurons) of one 
block and L - l be that of the other block, i.e.  

 
l = b0 - b1         (b0 > b1)  

 

  = b0 - b1 + L   (b0 ≤ b1)     (6)  

The propagation velocities of the boundaries b0 and b1 are 
expressed by  

 
db0/dt ≈ 1/∆t2j = 1/[τ·log(2 - 2exp(-(t2j - t2j-1)/τ))]  

 

db1/dt ≈ 1/∆t2j+1 = 1/[τ·log(2 - 2exp(-(t2j+1 - t2j)/τ))]   (7)  
 

Finally we approximate the intervals t2j - t2j-1 and t2j+1 - t2j 
by (L - l)∆t and l∆t with ∆t = τ·log2, respectively, since 
the difference in them only appear in double exponential 
terms. By subtracting the second equation from the first 
equation in Eq. (7), we then obtain the differential 
equation for the length l of the block.  

 
dl/dt = db0/dt - db1/dt  

 

= 1/[τ(log2 + log(1 - exp(-log2·(L - l))))]  
- 1/[τ(log2 + log(1 - exp(-log2·l)))]  

 

  = 1/[τ(log2 + log(1 – 2-(L - l)))]  
- 1/[τ(log2 + log(1 - 2-l))]    (8)  

 
4. Properties of Duration of Transient Oscillations  

 
4.1 Dependence of the duration on the initial block length  
 

To derive an explicit form of l(t), we approximate Eq. 
(8) by  
 

dl/dt ≈ 1/[τ(log2 - 2-(L - l))] - 1/[τ(log2 - 2-l)]  
 

     ≈ 1/τ·(1/log2 - 2-(L - l)/(log2)2 - (1/log2 - 2-l/(log2)2))  
 

     = k(exp(-c(L - l)) - exp(-cl))  
 

 k = 1/[τ(log2) 2],  c = log2   (9) 
 

We can set l ≤ L/2 without any restrictions, i.e. we regard l 
as the length of the smaller block. The duration T of the 
transient oscillations is then given as l(T) = 0, which 
means the boundaries merge and the smaller block 
disappears at T since the all xn then converge to xp or - xp 
quickly.  
The solution of Eq. (9) can be obtained by substituting y = 
exp(cl).  
 

exp(cl(t)) = exp(cL/2)tanh(-exp(-cL/2)ckt  
+ arctanh(exp(cl0 - cL/2)))   

 

 l0 = l(0)   (0 ≤ l0 ≤ L/2)    (10)  
 
The duration T of the transient oscillations are given by 
setting l(T) = 0.  
 

T = 1/(ck)·exp(cL/2)[arctanh(exp(c(l0 - L/2)))  
- arctanh(exp(-cL/2))]    (11)  

 
The duration T increases exponentially as the total length 
L. Further, it increases exponentially as the initial length l0 
of the smaller block, i.e. the number of neurons in the 
block, when L is large since arctanh(x) ≈ x for small x.  
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A simpler form of the duration T(l0) for large L is 
derived by letting L be infinity in Eq. (9). The equation 
and the solution become  

 
dl/dt = -kexp(-cl)  

 

l(t) = 1/c·log(exp(cl0) - ckt)  
 

T = (exp(cl0) - 1))/ck = τlog2·(2l0 - 1)  (l(T) = 0)  (12)  
 

where k = 1/[τ(log2)2], c = log2 and l0 = l(0) (0 ≤ l0 ≤ L/2). 
This shows the exponential dependence of the duration T 
on the initial block length l0. Further, the block length 
decreases in proportion to time in the beginnings, i.e. l0 - 
l(t) ≈ 2-l0/[τ(log2)2]·t for t « τ(log2)22l0, and the decrease 
rate decreases exponentially as the initial length.  

Figure 2 shows results of computer simulation with Eq. 
(1) under the following initial conditions  

 
xn = -1   (1 ≤ n ≤ l0)  

 

= 1    (l0 < n ≤ N)    (13)  
 

with g = 10.0, the time step: 0.01 and N (= L) = 40. The 
duration T of the transient oscillations was measured with 
the conditions |x1(T) + f(xN(T))| < 0.0001 and | xn(T) - f(xn-

1(T)| < 0.0001 for 2 ≤ n ≤ N. The duration increases 
exponentially as the initial block length. Equations (11) 
and (12) well agree with the simulation results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Duration T of the transient oscillations with the 

initial block length l0 (1 ≤ l0 ≤ 19) and N = 40.  
 

4.2 Distribution of the duration under random initial 
conditions  
 

When the initial values xn(0) (1 ≤ n ≤ N) of the states of 
neurons are given randomly, the initial length of the 
smaller block is considered to be distributed uniformly (0 
≤ l0 ≤ L/2). Then the probability density function h(T) of 
the duration T of the transient oscillations is derived from  
 

'd)'(d)2/,0(
00 0

0

∫∫ =
Tl

TThlLU    (14)  

where U(a, b) is the uniform distribution between a and b. 
Hence we obtain  

 
h(T) = |dT(l0; L)/dl0|-1/(L/2)  

 

       = 2kexp(-cL/2)cosech[2(exp(-cL/2)ckT  
+ arctanh(exp(-cL/2)))]·2/L  

 

       = 2/[τ(log2)2]·2-L/2cosech[2(2-L/2T/[τlog2]  
+ arctanh(2-L/2))]·2/L    (15)  

 
  There is a cut-off point Tc = τlog2·2L/2 at which the form 
of the probability density function changes. On one hand, 
for T > Tc or when the total length L (the number N of 
neurons) is large, the approximate form is derived by 
using arctanh(ε) ≈ ε and sinh(ε) ≈ ε  
 

h(T) ≈ k/(ckT+1)·2/L = 1/[τ(log2)2(T/(τlog2) + 1)]·2/L  
 

   (0 ≤ T ≤ 1/ck·(exp(cL/2) - 1))  
 

       = τlog2·(2L/2 - 1))     (16)  
 

This is also derived from Eq. (12), which is obtained from 
Eq. (9) with L infinity. The duration T is thus distributed 
in the form of 1/T. It is of interest that such a power-law 
distribution appears in this simple nonlinear system. On 
the other hand, for T < Tc or when the total length L is 
small, the form is approximated by the exponential 
distribution by using sinh(x) ≈ exp(x)/2 (x » 1) for large T 
in Eq. (15)  
 
 h(T) ≈ λexp(-λT)  

 

 λ ≈ 2exp(-cL/2)ck = 1/[2L/2-1·τ(log2)]  (17)  
 
The cut-off point increases exponentially as the number of 
neurons and the region in which the duration is distributed 
in the power-law form extends.  

 Figure 3 shows the probability density function h of the 
duration T of the oscillations in the network with the 
numbers N (= L) of neurons 10 (a), 20 (b), 40 (c). Plotted 
are a normalized histogram of the duration of 10000 
transient oscillations obtained with computer simulation 
of Eq. (1) (closed circles) and Eqs. (15) - (17) (solid, 
dashed, dotted lines, respectively). The initial states xn(0) 
is drawn from Gaussian random numbers with the mean 0 
and SD 0.1 in the simulation. Note that Fig. 3(a), (b) are 
semi-log plots and Fig. 3(c) is a log-log plot. The 
histogram in Fig. 6(c) is composition of those made per 
decade. When N = 10 (a), the histogram of the simulation 
results decreases about exponentially as the duration and 
is approximated by Eq. (17). When N = 20 (b), the 
histogram deviates from the exponential distribution and a 
long tail appears. Equation (15) gives the best fit to this 
intermediate form. When N = 40 (c), the slop of the log-
log graph of the histogram is close to -1 and the density 
decreases as the inverse of the duration. The power law 
form is retained in a wide range (101 < T < 106). The cut-
off point Tc ≈ 7.3×105 in Eq. (15) agrees with it.  
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Fig. 3.  Probability density function h of the duration T of 
the transient oscillations in the network with the numbers 
N (= L) of neurons 10 (a), 20 (b), 40 (c).  

 
The mean m, the variance σ2 and the coefficient of 

variation CV of the duration T are calculated with h(T). 
Using Eqs. (12) and (16) for large L, they are expressed 
explicitly as  

 
m(T(L)) = 2(exp(cL/2) - 1 – cL/2)/(c2kL)  

 

= 2τ(2L/2 - 1 - log2/2·L)/L  
 

σ2(T(L)) = (exp(cL) - 4exp(cL/2) + 3 + cL)/(c3k2L)  
- {m(T(L)}2  

 

CV(T(L)) = σ(T(L))/m(T(L))  
 

≈ (cL)1/2/2 = (log2)1/2/2·L1/2   (L » 1) (18)  
 

Thus the mean and SD (σ) increase exponentially as the 
number (L) of neurons and they are multiplied by 21/2 (≈ 
100.15) per neuron. The relative variation (CV) increases as 
the square root of the number of neurons and is larger than 
1 for L ≥ 10.  

5. Conclusion  
 
The kinematical model of the traveling waves in the 

ring network of unidirectionally coupled neurons was 
derived. The velocity of the traveling wave exponentially 
increases as the forward block length and the oscillations 
last exponentially long. The mean duration of the 
oscillations occurring from random initial conditions 
increases also exponentially as the total number of 
neurons in the network (m(T) ~ 2N/2). Further, the 
distribution of the duration of the transient oscillations 
changes from the exponential distribution to the power-
law form as the number of neurons increases.  
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