
Time-varying delay-connection induced amplitude death
in a pair of double-scroll circuits

Yoshiki Sugitani†, Keiji Konishi† ‡, and Naoyuki Hara†

†Dept. of Electrical and Information Systems, Osaka Prefecture University
1–1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 Japan

‡Email: konishi@eis.osakafu-u.ac.jp

Abstract—Time-delay connection induced ampli-
tude death has been considered as an attractive phe-
nomenon in the field of nonlinear science. Our previ-
ous study [Konishi, Kokame, Hara, 2010] analytically
revealed that a time-varying delay connection can in-
duce amplitude death and derived a systematic proce-
dure to design the connection. The present paper in-
vestigates amplitude death in a pair of the well-known
double-scroll circuits. The amplitude death region in a
connection parameter space is obtained using a linear
stability analysis. The amplitude death is experimen-
tally observed in the coupled circuits. It is confirmed
that the region in the connection parameter space on
our circuit experiments agrees well with that on the
analytical results.

1. Introduction

Various interesting phenomena in coupled oscillators
have attracted a growing interest [1]. It is well ac-
cepted that amplitude death, the connection induced
stabilization of coupled oscillators, is an important
phenomenon in the field of nonlinear science [2, 3].
Although amplitude death never occurs in identical
coupled oscillators [3, 4], a transmission delay in con-
nections can induce it [5]. The time-delay induced am-
plitude death has been the subject of many research
papers [6, 7, 8, 9, 10, 11, 12, 13].

Amplitude death has significant potential for prac-
tical applications because it is the stabilization of un-
stable steady states in coupled nonlinear oscillators.
For the practical situations where the connection de-
lay is long due to long-distance signal transmission, it
is impossible to induce the amplitude death. A few re-
searchers proposed the ideas which can induce death
even by long connection delays. Atay reported that
long distributed delay connections facilitate amplitude
death [14]. Konishi et al. showed that the multiple
long delay connections can induce it [15]. These re-
ports provided useful ideas; however, it would be dif-
ficult to realize the distributed delay connections and
the cost of the multiple delay connections would be
higher.

In recent years, we analytically showed [16] that a

Figure 1: Block diagram of a pair of oscillators (1)
coupled by connections (2).

time-varying delay connection, which overcomes the
disadvantages reported in the studies [14, 15], can in-
duce amplitude death. Although our previous paper
analyzed the stability of amplitude death and provided
a systematic procedure to design connections, there is
no experimental verification of the analytical results.

The present paper experimentally shows that the
time-varying delay connection can induce amplitude
death in a pair of the well-known double-scroll circuits.
The circuits are easily implemented by popular-priced
circuit devices; the time-varying delay signals are re-
alized by the peripheral interface controllers (PICs)
which are the microcontrollers made by Microchip
Technology. We confirm that the amplitude death re-
gion in a connection parameter space on the circuit
experiments agrees well with that on the analytical
results.

2. Coupled oscillators [16]

Let us consider m-dimensional oscillator α and os-
cillator β, as illustrated in Fig. 1,

ẋα,β = F
(
xα,β

)
+ buα,β ,

yα,β = cxα,β ,
(1)

where xα,β ∈ Rm are the state variables and uα,β ∈ R
are the coupling signals. yα,β ∈ R are the output sig-
nals. b ∈ Rm and c ∈ R1×m are the input and output
vectors. The fixed point of each oscillator without cou-
pling (i.e., uα,β ≡ 0) is written as x̄ : F (x̄) = 0. The
coupling signals are described by

uα,β = ε
{

yβ,α
τ(t) − yα,β

}
, (2)
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Figure 2: Sketch of time-varying delay τ(t): periodic
sawtooth type function.

where yα,β
τ(t) := yα,β(t − τ(t)) are the delayed output

signals and ε > 0 is the coupling strength. The time
delay τ(t) ≥ 0 varies around a nominal delay τ0 > 0
with amplitude δ ∈ [0, τ0] as follows (see Fig. 2):

τ(t) := τ0 + δf(Ωt).

Ω > 0 is the frequency of variation. f(x) is the periodic
sawtooth type function,

f(x) :=⎧⎪⎪⎨
⎪⎪⎩

+
2
π

(
x − π

2
− 2nπ

)
if x ∈ [2nπ, (2n + 1)π),

− 2
π

(
x − 3π

2
− 2nπ

)
if x ∈ [(2n + 1)π, 2(n + 1)π),

for n = 0, 1, . . .. Oscillators (1) with connections (2)

have the homogeneous steady state:
[
xαT xβT

]T

=[
x̄T x̄T

]T
. Here, xα,β = x̄ + Δxα,β are substituted

into the coupled oscillators. The linearized systems at
the homogeneous state are described by

Δẋα,β = AΔxα,β + εbc
{

Δxβ,α
τ(t) − Δxα,β

}
, (3)

where Δxβ,α
τ(t) := Δxβ,α(t − τ(t)) and A :=

{∂F (x)/∂x}x=x̄. Linear systems (3) can be rewritten
as

ẋ(t) = Ax(t) + Bx(t − τ(t)), (4)

where x(t) :=
[
ΔxαT ΔxβT

]T

,

A :=
[
A − εbc 0

0 A − εbc

]
, B :=

[
0 εbc

εbc 0

]
.

According to study [17], we notice that if a time-
invariant comparison system,

ẋ(t) = Ax(t) +
1
2δ

B

∫ t−τ0+δ

t−τ0−δ

x(θ)dθ, (5)

is asymptotically stable, then linear system (4) is sta-
ble for large Ω. The stability of system (5) is governed

(a)

(b)

Figure 3: Circuit diagrams: (a) double-scroll circuits;
(b) time-varying connections.

by the roots of its characteristic equation,

g(λ) := det
[
λI − A − Be−λτ0H(λδ)

]
= 0, (6)

where

H(x) :=

{
(sinhx)/x if x �= 0,

1 if x = 0.

3. Coupled double-scroll circuits

As illustrated in Fig. 3(a), the double scroll circuits
[18] are governed by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C1
dvα,β

1

dt
=

1
R

(
vα,β
2 − vα,β

1

)
− h

(
vα,β
1

)

C2
dvα,β

2

dt
=

1
R

(
vα,β
1 − vα,β

2

)
+ iα,β

L + iα,β
u

L
diα,β

L

dt
= −vα,β

2

.

(7)
vα,β
1 [V], vα,β

2 [V], and iα,β
L [A] denote the voltages

across C1 [F], C2 [F], and the current through L [H]
respectively. Currents h

(
vα,β
1

)
[A], where

h(v) := m0v+
1
2
(m1−m0) |v + Bp|+1

2
(m0−m1) |v − Bp| ,
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Figure 4: Stability regions in ε-τ0 plane: curves and shaded area are the stability boundaries and the stability
regions, which are analytically estimated by Eq. (6); symbol © (×) denotes the occurrence (non occurrence)
of stabilization experimentally. (a) time-constant delay connection (δ = 0), (b) time-varying delay connection
(δ = 0.56,Ω = 28).

flow through the nonlinear resistors.
The circuit diagram of the time-varying connec-

tions is illustrated in Fig. 3(b). The voltages vα,β
2

are applied to PIC (PIC18F2550) devices. These de-
vices read the voltages via their own analog to digital
converters, and output the delayed digitized signals.
These signals are transformed into the delayed volt-
ages vα,β

2,τ(t) := vα,β
2 (t − τ(t)) by the digital to analog

converters (DAs) using R/2R resistor network. The
currents iα,β

u through resistors r are described by

iα,β
u =

1
r

(
vβ,α
2,τ(t) − vα,β

2

)
.

Circuits (7) are described by the dimensionless form
Eq. (1) with

F (x) :=

⎡
⎣η {x2 − x1 − g(x1)}

x1 − x2 + x3

−γx2

⎤
⎦ , b =

⎡
⎣0

1
0

⎤
⎦ , c =

⎡
⎣0

1
0

⎤
⎦

T

,

where the dimensionless time t/(RC2) is used instead
of the real time t. The state variables, the parameters,
and the nonlinear function are rewritten as

xα,β
1 :=

vα,β
1

Bp
, xα,β

2 :=
vα,β
2

Bp
, xα,β

3 :=
iα,β
L R

Bp
,

a := m1R, b := m0R, η := C2/C1, γ := R2C2/L,

g(x) := bx + (b − a) {|x − 1| − |x + 1|} /2.

Each oscillator without connection (i.e., uα,β ≡ 0) has
three fixed points: x̄± :=

[±p 0 ∓p
]T and x̄0 := 0,

where p := (b − a)/(b + 1). For simplicity, the present
paper considers the stabilization of x̄+. The dynamics

of oscillators (1) coupled by connections (2) around
x̄+ is described by Eq. (4), where

A =

⎡
⎣−η(b + 1) η 0

1 −1 1
0 −γ 0

⎤
⎦ , ε =

R

r
.

4. Circuit experiments

In this paper, the parameters are fixed at

C1 = 0.01 × 10−6F, C2 = 0.1 × 10−6F,

L = 18 × 10−3H, Bp = 1.0V, R = 1800Ω,

m0 = −0.4 × 10−3, m1 = −0.8 × 10−3,

where the double-scroll attractor exists in each oscilla-
tor without connection. We derive the stability bound-
ary curves of Eq. (6) by using the procedure proposed
in our previous study [16], as shown in Fig. 4. From
these curves, the stability region (i.e., shaded area in
Fig. 4) can be obtained.

Figure 4(a) shows the curves and the regions for the
time-constant delay connection (i.e., δ = 0). It can
be seen that there exist a few small stability regions
on ε-τ0 plane. In contrast, for the time-varying delay
connection with δ = 0.56 and Ω = 28, as shown in
Fig. 4(b), there exists no curve in the wide range ε ∈
(ε∗2, +∞) on ε-τ0 plane. This fact implies that there
is no upper limit of τ0 in the range: the fixed point
is stabilized by the arbitrarily long nominal delay τ0

when ε is chosen from the range.
We fill in symbol © (×) in ε-τ0 plane if the stabi-

lization (non-stabilization) is experimentally observed.
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(a) (b)

Figure 5: Time series data of the circuit voltage vα
2 : (a) point A (ε = 0.5, τ0 = 3.0), (b) point B (ε = 1.5,

τ0 = 6.0) in Fig. 4. Horizontal axis: t (5 ms/div); vertical axis: vα
2 (0.5 V/div).

The time series data of the voltage vα
2 is shown in

Fig. 5(a). At time t = 12.5 × 10−3 s, the oscilla-
tors are coupled by the connections with parameters
(ε = 0.5, τ0 = 3.0) corresponding to point A in Fig.
4(a). It can be seen that the voltage does not con-
verge on the fixed point. Meanwhile, Fig. 5(b) shows
that for the connections corresponding to point B, the
voltage converges on the fixed point. The stability re-
gion on the analytical estimation roughly agrees with
that on the circuit experiments.

5. Conclusion

The present paper experimentally showed that the
time-varying delay connections induce the amplitude
death in the coupled double-scroll circuits. The stabil-
ity analysis agrees with the results of our experiments.
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