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Abstract- The author studies transient states the 

duration of which increases exponentially with system size 
(exponential transients) in rings of coupled symmetric 
bistable maps. When coupling is unidirectional (one-way 
coupling), transient oscillations rotating in a ring of maps 
exist. When coupling is bidirectional (two-way coupling), 
transient pulse patterns exist. In both coupling the duration 
of transient states on the way to spatially homogeneous 
steady states increases exponentially with the number of 
elements. Further, the duration of transient states occurring 
from random initial states is distributed in a power law 
form.  
 
1. Introduction  

 

Exponential transients are transient states the duration 
(lifetime) of which increases exponentially with system 
size. They were first found in a one-dimensional bistable 
reaction-diffusion system, which is known as the time-
dependent Ginzburg-Landau equation in the field of phase 
transitions [1]. In one-dimensional domain, a transient 
front (kink), a pulse (kink-antikink pair) and multiple 
pulse patterns are formed until a system reaches a 
spatially homogeneous steady state. The motion of these 
patterns extremely slow, which is called metastable 
dynamics, and the duration of them increases 
exponentially with domain length. Such dynamically 
metastable patterns have since been studied in various 
reaction-diffusion equations and convection-diffusion 
equations in multi-dimensional domains [2].  

Another form of exponential transients is transient 
chaos or supertransients, which was found in coupled map 
lattices [3]. A lattice shows complex turbulent patterns 
retaining invariant statistical measures and suddenly falls 
onto a periodic attractor. The duration of complex 
behaviors also increases faster than exponentially with the 
number of elements. Such transient chaos has since been 
studied in various systems including reaction-diffusion 
equations, excitable media and complex networks [4].  

Recently, exponential transient oscillations with the 
same mechanism as metastable dynamics were found in a 
unidirectionally coupled ring of sigmoidal neurons [5]. 
Qualitatively the same transient oscillations were also 
found in a discrete-time system, i.e. a ring of directly 
coupled bistable cubic maps [6]. These exponential 
transient patterns with dynamical oscillations are of 
interest since they lie between simple static spatial 

transient patterns and complicated spatiotemporal chaotic 
transient patterns.  

In this study, the author considers exponential 
transients in rings of symmetric bistable maps with 
standard coupling. In unidirectionally coupled maps, 
traveling pulses rotating in a ring similar to those in a ring 
neural network arise in its transient state. In 
bidirectionally coupled maps, transient pulse patterns like 
metastable patterns in reaction-diffusion systems exist 
when coupling is strong and nonlinearity is weak. It is 
shown that both transient states last exponentially long 
time with the number of elements and that the duration of 
them under random initial conditions obeys a power-law 
distributions up to a cut-off.  

 
2. Rings of Coupled Bistable Maps  

 

The following rings of coupled maps are considered.  
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where coupling is unidirectional in Eq. (1a) with strength 
ε and is bidirectional in Eq. (1b) with strength ε/2. Figure 
1 shows a symmetric bistable map f(x) with some values 
of a parameter K of nonlinearity. The map as well as the 
rings have bistable fixed points xn = ±1/2 and au unstable 
one xn = 0.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Symmetric bistable maps.  
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Figure 2(a)(b) shows examples of transient oscillations 
occurring under random initial conditions with a uniform 
distribution: xn(0)~ U(-1/2, 1/2) in Eq. (1a) (unidirectional 
coupling) with N = 20, ε = 0.2 (a), 0.8 (b) and K = 0.5. 
Time courses of the states x1(t) of the first elements are 
plotted in upper panels, and spatiotemporal patterns of the 
states of elements are plotted with black (white) for 
positive (negative) signs in lower two panels. Single 
traveling pulses are quickly generated from random initial 
states, while they are unstable and the states converge to 
one (xn = -1/2) of spatially homogeneous bistable states 
after a long time. The speed of a traveling wave is slow 
when coupling strength ε is small (a), and vice versa (b).  

Figure 2(c) shows an example of transient pulses in Eq. 
(1b) (bidirectional coupling) with N = 40, ε = 0.5 and K = 
0.1, in which snapshots of the states of elements at t = 0, 
100, 5000, 10000, …, 35000 (by 5000) are plotted. A 
standing pulse is also generated quickly, keeps its form for 
a long time, and finally collapses.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  Spatiotemporal patterns in transient states for 
unidirectional coupling (a) (b), bidirectional coupling (c).  

 
3. Transient Oscillations with Unidirectional Coupling  

 

3.1. Kinematics of Traveling Waves   
 

When coupling is unidirectional and the number of 
elements is even: N = 2lh, an unstable aperiodic (quasi-
periodic) traveling wave exists in the subspace: xn =  xn+N/2 
(1 ≤ n ≤ lh). It is a symmetric pulse wave with equal pulse 
widths and is observed with computer simulation of Eq. 
(1a) under a symmetric initial condition:  
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where l0 and N - l0 are initial spatial pulse widths, i.e. the 
numbers of elements in pulses, and both are set to be a 

half lh (= N/2) of the number of elements. The speed of the 
symmetric traveling wave depends on its spatial pulse 
width lh. We define the propagation time (an inverse of the 
speed) of the traveling wave by time required for the 
propagation of pulse fronts over one unit distance (one 
element). Figure 3 shows a semi-log plot of ∆t(lh) - ∆t∞ 
obtained with computer simulation of Eq. (1a) under Eq. 
(3) with ε = 0.2 and K = 0.5 against lh, where ∆t∞ = ∆t(lh = 
8) is propagation time for lh large enough. Difference in 
the propagation time decreases exponentially with lh, 
hence the number N of elements. It is approximated by  
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Fig. 3.  Propagation time of traveling waves.  
 
Let us assume that the propagation time of each pulse 

front depends on its backward pulse width as was done in 
[6]. Changes in the spatial width l of one pulse are then 
expressed by difference between the inverses of the 
propagation times of two pulse fronts:  
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It should be noted that the propagation time of a pulse 
fronts depends on the forward pulse width in a ring neural 
network [5]. The mechanism causing the dependence of 
the propagation time of a front on the backward pulse 
width in coupled map lattices is not clear at present.  

 
3.2. Properties of Transient Oscillations  

 

The solution l(t) of Eq. (5) with initial pulse width l(0) 
= l0 is obtained as  
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The duration T of the traveling wave and transient 
oscillation is given by letting l(T) = 0:  

 

)]}2/p(arctanh[ex

))]2/(p(arctanh[ex{)2/exp();( 00

N

NlNNlT

α−−

−α
αβ
α

=     (7)  

 

-6

-5

-4

-3

-2

-1

0

0 1 2 3 4 5 6 7 8

l h  (= N/2)

lo
g 1

0
( ∆

t(
l h

) 
-
 ∆

t ∞
)

- 562 -



   

Simpler forms of Eqs. (6) and (7) are given by letting N be 
infinity in Eq. (5):  
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Figure 4(a) shows a semi-log plot of the duration T of 
transient oscillations against initial pulse width l0 in Eq. 
(1a) with N = 21, ε = 0.2 and K = 0.5. Plotted are the 
results of computer simulation of Eq. (1) under Eq. (3) 
(solid circles) and T(l0) in Eq. (8) (a dashed line). The 
duration increases exponentially with initial pulse width, 
and Eq. (8) agrees with the simulation results.  

Figure 4(b) shows a semi-log plot of the duration T of 
transient oscillations against coupling strength ε obtained 
by computer simulation of Eq. (1a) under Eq. (3) with N = 
20 and three sets of (K, l0). One of interest is symmetry in 
T with respect ε = 1/2 despite the fact that the propagation 
time of a pulse front monotonically increases with ε as 
shown in Fig. 1. The other is that unstable asymmetric 
traveling waves are stabilized into stationary standing 
pulses as ε → 0, while they become stable traveling waves 
as ε → 1. That is, the duration T diverges near both sides 
of graphs in Fig. 4(b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Duration of oscillations vs initial pulse width l0 (a) 

and vs coupling strength ε (b).  
 
Further, the distribution h(T) of the duration T of 

transient oscillations occurring from random initial states 
is obtained by letting initial pulse width l0 be distributed 
uniformly in {0, N/2) with T(l0; N) in Eq. (7):  
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There is a cut-off Tc in h(T) in Eq. (10), and the duration is 
distributed in an inverse power law form for T < Tc:  
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while it is distributed exponentially for T > Tc:  
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Figure 5 shows a log-log plot of the distribution h(T) of 
the duration T of oscillations, in which plotted are a 
histogram obtained with 104 runs of computer simulation 
of Eq. (1a) with  N = 15, ε = 0.2 and K = 0.5 under xn(0) ~ 
U(-1/2, 1/2) (solid circles), Eq. (10) (a solid line), Eq. (11) 
(a dashed line) and Eq. (12) (a dotted line). Equation (10) 
agrees with the simulation results, and Eq. (11) agrees 
with them also up to a cut-off: Tc ≈ 1.76×107.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5.  Distribution of the duration of oscillations.  
 
The mean m(T) and variance σ2(T) of the duration T of 

oscillations also increase exponentially with the number N 
of elements:  
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and the coefficient of variation (CV) increases with the 
square root of N. Figure 6 shows the logarithms of  m(T) 
and σ(T) as well as CV(T) of the duration against the 
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which they agree with each other.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  m, σ and CV of the duration of oscillations.  
 

4. Transient Pulses with Bidirectional Coupling  
 

When coupling is bidirectional, computer simulation of 
Eq. (1b) can show that standing pulses are stabilized when 
pulse width is over a threshold depending on parameter 
values. It is known that such stabilization of spatially 
inhomogeneous patterns occurs generally in spatially 
discrete systems. However, pulses of smaller width than a 
threshold are still unstable, and the duration of them 
increases exponentially with pulse width in the same way 
as that for unidirectional coupling. Figure 7 shows a semi-
log plot of the duration T of pulses against initial pulse 
width l0 obtained by computer simulation of Eq. (1b) 
under Eq. (3) with N = 100 and three sets of (K, ε). The 
duration increases exponentially, and a threshold length 
increases as K decreases and ε increases.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 7.  Duration of pulses vs initial pulse width l0.  
 
Figure 8 shows a log-log plot of the distribution h(T) of 

the duration of pulses, in which plotted are a histogram 
obtained with 104 runs of computer simulation of Eq. (1b) 
under xn(0) ~ U(-1/2, 1/2) with  N = 40, ε = 0.5 and K = 
0.1 (solid circles) and  Eqs. (10) - (12) (lines). The values 

of parameters are estimated by fitting T(l0) in Eq. (8) to 
T(l0) in Fig. 7 and are set to be α = 0.651 and β = 0.487. 
The duration is distributed in an inverse power law form 
up to a cut-off Tc ≈ 1.14×106, and Eqs. (10) and (11) agree 
with the simulation results except for small T (< 10).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8.  Distribution of the duration of pulses.  
 

5. Conclusion  
 

Properties of transient oscillations in a ring of 
unidirectionally coupled symmetric bistable maps and 
transient pulses in a ring of bidirectionally coupled maps 
were studied. Changes in pulse width were described by 
qualitatively the same equation (Eq. (5)) as those in 
reaction-diffusion systems [1] and ring neural networks 
[5]. The duration of both transient states increased 
exponentially with pulse width and the number of 
elements. Further, the duration of them under random 
initial conditions obeyed a power law distribution function.  

Analytical derivation of the kinematics (Eqs. (4) and 
(5)) of the motion of pulses and analysis of intrinsic 
duality causing the symmetry in Fig. 4(b) and bifurcations 
causing changes in the stability of traveling (Fig. 4(b)) and 
standing (Fig. 7) pulses are future studies.  
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