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Abstract—In the last few years, new methods for cli-
mate field reconstructions have been proposed. Apart from
some stationarity assumptions they usually rely on having
an i.i.d. temperature process from year to year. In this con-
tribution we investigate how a mismatch between the used
model and the observed process parameters can introduce
additional errors into the reconstruction. We conclude that
the error introduced by the model mismatch is usually less
severe than the one caused by the rather noisy data record-
ing process in the climate archives used.

1. Introduction

While in past centuries climate has been considered to
be stable, we have learned in the last decades that this is
not the case. Clearly, marked transitions took place with
ice ages and warm periods, but also on shorter time scales
changes can be observed. The projections of possible fu-
ture climate are done using dynamical models driven by
changes in solar irradiance, volcanic aerosols, and green
house gases. In order to test whether these models can
indeed correctly describe Earth’s climate they need to be
compared to observations – which unfortunately are only
available for the last one or two centuries at most. Thus,
the climate of the past needs to be inferred from climate
archives (proxies). These proxies can be seen as noisy
recorders of climate information: trees close to an ecotone
mostly react to one single stressor, like summer temper-
atures for the Alpine tree line, thus records of past tree
growth can be used to reconstruct summer temperatures.
To this end, a (usually statistical) model is used to model
temperature evolution and the dependence of tree growth
on it. In the simplest, the summer temperatures of sub-
sequent years are independent from each other and a lin-
ear reaction of tree growth on climate is proposed [1, 2].
There are two major points for improvement: tree growth
is a nonlinear function and both temperature and mois-
ture can play an important role [3]; secondly, there ex-
ists a spatio-temporal process linking the state of climate
variables of subsequent years. Here we focus on this lat-
ter part because little has been done to make improve-
ments. For instance, the proposed reconstruction method

of [4], employed for reconstruction of Arctic temperatures
[5] but also tested over Europe [6], only assumes i.i.d.
normal innovations. Here, we use the Kramers-Moyal-
Expansion (KME) [7, 8, 9] on European temperature data
to see whether this simplification actually holds and what
the influence of observed vs. modelled climate parameters
is. We show how reconstruction skill deteriorates as a func-
tion of model mismatch, but conclude that for most pur-
poses the influence of non-ideal climate archives is likely
to play a more important role.

2. The Kramers-Moyal-Expansion (KME)

We now briefly describe the underlying assumptions; for
a more detailed discussion see for example [10, 7, 11] or
textbooks such as [12, 13]. While the method can in prin-
ciple be extended to more than one dimension [14], the
amount of available data is insufficient in this application,
as there are at most 160 years of observations. The sys-
tem behaviour is assumed to be relatively continuous in the
sense of the Central Limit Theorem and we argue that large
jumps are absent in the year to year evolution of tempera-
ture anomalies. Thus, on the considered time scales the
process can be approximated to be continuous in the limit
of infinitely small step size.

Such a stochastic system can be represented by a
stochastic differential equation (SDE) of the Langevin type
dxt = f (xt) dt + g(xt) dWt, where f (xt) and g(xt) are the
deterministic and the stochastic part of the dynamics and
dWt is a Wiener process. In general the SDE has time vary-
ing parts f , g. Here, estimates from time slices of a 2000
year long climate model simulation indicate minor changes
that are compatible with stationary functions. It can also be
more useful to look at the probabilities and probability cur-
rents through the corresponding Fokker-Planck-equation

∂t p(x, t) = −∂x

[
D(1)(x) − ∂xD(2)(x)

]
p(x, t).

The two functions D(1,2)(x) are the deterministic drift and
the stochastic diffusion coefficient respectively. Using the
Kramers-Moyal expansion we can estimate them:

D(1)(X) = limτ→0
1
τ 〈x(t + τ) − x(t)〉x(t)=X (1)
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Figure 1: KME of annually averaged temperature data at
47.5◦ N, 7.7◦ E, drift and diffusion estimates.
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Figure 2: KME of CRU temperature data for annual aver-
ages (top) and summer (bottom row) temperatures. Shown
are results of fitting a linear function to the drift and a
quadratic function to the diffusion.

D(2)(X) = limτ→0
1
2τ

〈
(x(t + τ) − x(t))2

〉
x(t)=X

(2)

In most texts, the limit limτ→0 is taken. The effect of fi-
nite sampling time on the conditional moments and thus on
the form of the KME coefficients has been investigated by
[11]. Since we deal with seasonal/annual mean values, we
follow the approach of [8]. Similar to their study we are
not interested in the evolution for infinitesimal times, but
the averaged effect of a fast varying variable. We there-
fore evaluate (1,2) for finite times. The shape of the result-
ing drift and diffusion coefficients are then approximated
by low order functions whose coefficients are determined
through optimisation. In contrast to [8] we stay in the Itô
interpretation of the SDE.

3. Application of the KME to European temperature
data

We apply the KME to the gridded instrumental
CRUTemp4v [15] data on a 5◦ × 5◦ grid. This dataset has
been used in recent climate field reconstructions [16, 5]
and it provides anomalies w.r.t. the 1961-90 mean. The
estimated deterministic drift term at 47.5◦ N, 7.7◦ E is dis-
played in figure 1a (crosses with 95% confidence interval).

A linear function is fitted to the data (solid line). The lin-
ear function is related to the postulated [4, 6] AR(1) local
temperature process

Tt+1 − µT = α (Tt − µT ) + εT,t, (3)

where α, µT are, respectively, the AR(1) coefficient and the
process mean, εT,t ∼ N(0, σ2

T ) is the noise term, modelled
to be purely additive in [4] and [6]. Using from now on
temperature anomalies xt = Tt − µT , we can see that the
corresponding deterministic part of the Langevin equation
would read f (xt) = (α − 1) xt.

Next we consider the diffusion term and the resulting
type of noise in the Langevin equation. Looking a the ex-
perimental diffusion coefficient (crosses and error bars in
figure 1b), we can see that the results indicate a non-zero
curvature to the diffusion. We assess the deviation from
the idealised case (3) by fitting D(2)(x) = σ2

0 + σ2x2 to the
estimated diffusion.

The spatial distribution of the parameters is shown in fig-
ure 2. The first column displays the linear coefficient α. It
is mostly between 0.7-0.9, except for some grid cells over
the Atlantic and the Mediterranean. In the latter region as
much as two thirds of the data are missing, which leads to
more uncertain estimates. The second and third column of
figure 2 show the estimated additive noise strength σ2

0 and
the curvature of the diffusion σ2. Interannual variability is
lower in the South East and higher in the North West. The
curvature of the diffusion term (third column in 2) is mostly
smaller than 0.2 everywhere. While clearly being present
in the instrumental data, the non-additive term of the in-
terannual variability seems relatively small. However, the
question remains whether a stochastic description using an
additive noise term as in (3) is justifiable.

In principle, using Bayesian inference on a hierarchy
of models [5, 17] permits inclusion of arbitrary stochas-
tic models. However, complexity comes with a trade-
off: parameters and variables are usually estimated using a
Gibbs sampler, iteratively updating each value using the an-
alytically derived expressions for the posterior conditional
probability densities. For simple models, draws are taken
from distributions for which fast and stable implementa-
tions exist. For more complicated posteriors the draws are
sampled using e.g. Metropolis-Hastings like algorithms.
This leads to additional computational steps when employ-
ing Bayesian inference. We will discuss the necessary ex-
tensions to the model of [18] and discuss the additional
computational challenges. Afterwards, we will show esti-
mates of the reconstruction error introduced by a too simple
stochastic model.

4. Influence of model mismatch in climate reconstruc-
tions

The quadratic temperature dependence of the diffusion
can be seen as an increased variability of next year’s (or
season’s) temperatures following an extremely cold (or
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Figure 3: Reconstruction errors for three proxy noise levels
, τ2

P = {1, 2, 4}. Left: RMSE and cross correlation coeffi-
cient, right: SDR and bias.

warm) year. While the numerical value seems to indicate
only a small correction, we nevertheless should test its in-
fluence. Thus, we need to extend (3) with a corresponding
term:

xt+1 = αxt +

√
σ2

0 + σ2 · x2
t εT,t, (4)

where εT,t is still a Gaussian process. The extension to tem-
perature anomalies in space could be through a covariance
matrix Σ = Σ0 + xT

t Σ2xt. While this extension does not
seem like a major rewrite, it has dire consequences for the
estimation process used by [6]. The relatively simple pos-
terior density distributions derived by [4] need to be modi-
fied with the temperature anomalies now showing up in the
variance of the posterior probability density for the temper-
ature anomalies. The additional costs of this modification
are twofold: first, inclusion of a second spatial covariance
structure Σ2, either to be parametrised or estimated during
the inference. As noted by [19], estimating such a spatial
covariance matrix is difficult and convergence cannot be
guaranteed. Most importantly, an expensive Metropolis-
Hastings step is needed to actually estimate the conditional
PDF for each temperature in each time step.

Now, we estimate the errors caused by assuming the sim-
ple model in (3) when the true data follows a process as in
(4). As the main goal of [4] and [6] is to reconstruct past
climate from long climate archives, we need to know how
big the actual impact of using a too simple temporal model
is on the reconstruction quality compared to errors from
the input data noise. Long proxy time series can have large
uncertainties attached to the data itself and the exact proxy
response function. The transfer function describing the re-
sponse of the proxy on the climate field variables also is
often unknown.

To assess the additional error introduced by the model
mismatch we construct a 1000 time step long artificial data
set following the procedure outlined by [4]. We vary the
quadratic term σ2, using the noise term as in (4). When
constructing the time series one has to take care that for
finitely big time steps the Euler-Maruyama method does
not necessarily converge for this drift and diffusion [20].
Additionally the stationary density degenerates asymptoti-
cally to to a delta function around the origin as the curva-
ture σ2 increases. The resulting temperature anomaly data

(created with zero offset, µ = 0) are then standardised to
unit variance. From this data, pseudo proxies are built us-
ing a linear proxy response function. We also include a
set of proxies with auto correlation in its transfer function
pt = β0 + β1xt + β2 pt−1 + εp,t. The proxy noise remains a
Gaussian distributed i.i.d. random variable εp,t ∼ N(0, τ2

p).
The proxy noise strength is varied over τP ∈ {1, 2, 4}, which
cover the range of real world values [21]. The interval
is then split in two parts, a calibration interval (200 time
steps) with instrumental data being available, the true data
being distorted by low noise, and a reconstruction inter-
val (800 time steps), where only the artificial proxy data
are present. The resulting reconstructions are then eval-
uated using four different error measures: the mean bias,
the cross correlation function, the root mean square error
(RMSE) and the standard deviation ratio (SDR) of recon-
struction and target data. In figure 3 we display these re-
sults for a range of σ2 ∈ [0, 1], which is even larger than
the observed ratios in section 3. The bias remains close
to zero, and the SDR remains relatively constant close to
one. The cross correlation between reconstruction and true
target (XCor) is around 0.5 for medium noise strength and
no curvature and decreases slowly with increased σ2. The
RMSE is around 1.0 for medium noise, increasing in ac-
cordance with the model mismatch. The shading shows the
95% confidence bands around the mean values of 5000 re-
alisations of the Gibbs sampler.

The added curvature can indeed have a substantial ef-
fect on the fidelity of the reconstruction, if it is sufficiently
big. To rank the effect of the model mismatch we compare
the values at the maximum observed curvature σ2 = 0.2 to
those at zero curvature. We can see from figure 3 that in-
creasing the curvature has roughly the same effect as dou-
bling the noise variance. As many of the proxies used e.g.
for the Arctic region in [16] have noise variance exceed-
ing the values used in this experiment, the largest contribu-
tion of uncertainty comes first from the proxy noise, then
from the spatial sparseness – one cannot expect to get a
meaningful reconstruction far away from the data sources.
Only after tackling these issues, further complicated mod-
els should be included in the reconstruction method of [4].

5. Conclusion

In the ongoing quest on reconstructing past climate
fields, new tools as Bayesian inference are currently be-
ing adopted. New methods introduce new challenges, ev-
ery tool chain being only as strong as its weakest link.
While Bayesian inference does have many advantages over
simple linear regression schemes, the underlying stochas-
tic models need to be either derived from dynamical analy-
ses of the underlying processes, statistical properties of the
data or thoroughly checked for consistency with them. The
Kramers-Moyal-Expansion can be a tool for such checks,
although precautions have to be taken. Stochastic mod-
elling usually requires long time series, which are not avail-
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able in climate research: data go back a few centuries at
maximum. The results obtained from analyses of instru-
mental data indicate that for European temperatures a sim-
ple autoregressive model can be considerd sufficient to de-
scribe the local temporal evolution of the temperature field.
Our analysis shows that while improving the model over
the most simple assumptions could give better results, the
errors introduced by sub-par input data are at least of com-
parable size. Thus, it has to be carefully considered if the
cost of including e.g. a small non-additive term into the in-
terannual variability does not heavily outweigh the possible
benefits.
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