
Black Box Checking of Mobile Robot Path Planning Satisfying
Safety Hyperproperties

Naomi Kuze†, Keiichiro Seno†, and Toshimitsu Ushio†

†Graduate School of Engineering Science, Osaka University
1–3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Abstract—A k-safety hyperproperty is a hyperproperty
that is characterized by ”bad prefixes.” For example, it
can express security policies for safety-critical and safety-
related systems. Black box checking (BBC) is a promising
formal verification method of systems whose internal struc-
ture is unknown. However, a BBC method for verifying
hyperproperties has not been considered yet. We extend a
BBC for k-safety hyperproperties, and apply it to verifica-
tion of a security policy for path planning of a mobile robot,
and demonstrate it with an illustrative example.

1. Introduction

A hyperproperty [1], a set of trace properties, allows us
to represent relations over multiple traces. A safety prop-
erty is a property that proscribes “bad thing” [1]. That is,
in a safety property, “bad thing” does not happen during
execution. According to [2], the “bad prefix” is (i) finitely
observable, and (ii) irremediable. A k-hyperproperty, an
extension of safety properties can express security policies
for safety-critical or safety-related systems. Finkbeiner et
al. [3] showed that a regular k-safety hyperproperty S can
be represented by a finite automaton which accepts the vi-
olation (the bad-prefix) of S. This representation makes
it possible to perform an automata-theoretic approach for
regular k-safety hyperproperties.

Black box checking (BBC) is a method that checks
whether a black box system (BBS) whose internal structure
is unknown satisfies a given specification. Peled et al. [4]
established a BBC approach that utilizes automata learning
algorithm [5]. In recent years, the BBC approach has been
refined and applied to safety assurance for cyber-physical
systems (CPSs) [6,7]. However, these BBC methods focus
only on trace properties, but not on hyperproperties.

In this paper, we (1) propose a BBC method of mobile
robot path planning satisfying a k-safety hyperproperty, uti-
lizing an active automata learning, based on the Angluin’s
L∗ algorithm, and (2) demonstrate the proposed method
with an illustrative example.

The rest of the paper is organized as follows. We give
preliminaries in Section 2. We present problem formula-
tion in Section 3, and propose a BBC method for a mobile
robot in Section 4. Section 5 shows the demonstration of

ORCID iDs Naomi Kuze: 0000-0001-8224-3476, Keiichiro Seno:
0000-0002-5837-8132, Toshimitsu Ushio: 0000-0002-4009-270X

the proposed method with an illustrative example. We con-
clude this paper in Section 6.

2. Preliminaries

In this paper, let AP be a finite set of atomic propositions
and Σ := 2AP be a finite alphabet. Also, let Σω (resp. Σ∗)
denote the set of all infinite (resp. finite) traces (or words)
over Σ. For a set A, let P(A) be the powerset of A, and let
P f in(A) be the set of all finite subsets of A. |A| denotes the
cardinality of a set A.

2.1. Hyperproperties

A hyperproperty [1] over an alphabet Σ is a set of sets
of infinite traces over Σ. A hyperproperty H is a subset of
P(Σω). A set of infinite traces T satisfies a hyperproperty
H, denoted by T |= H, iff T ∈ H.

The definition of safety can be extended to hyperprop-
erties by generalizing a bad prefix from a finite trace to a
finite set of finite traces [1]. For a finite set T ∈ P f in(Σ∗) of
finite traces and a set T ′ ∈ P(Σω) of infinite traces, T is a
prefix of T ′, denoted by T ≤ T ′, iff

∀t ∈ T, (∃t′ ∈ T ′, t ≤ t′).

Definition 1 (k-safety hyperproperty [1]) A hyperprop-
ery S is a k-safety hyperproperty iff

∀T ∈ P(Σω). (T < S→ ∃M ∈ P f in(Σ∗). (M ≤ T ∧
|M| ≤ k ∧ (∀T ′ ∈ P(Σω). M ≤ T ′ → T ′ < S))).

We call M a k-bad prefix for S. Intuitively, it is possible to
check whether there is a violation of S by simply finding at
most k traces that violate S.

It is shown that a regular k-safety hyperproperty S can
be represented by a finite automaton which accepts the vi-
olation (the bad-prefix) of S (Theorem 6 in [3]).

2.2. Automata

A finite automaton is a tuple A = (Q, q0,Σ, δ, F), where
Q is a finite set of states, q0 ∈ Q is an initial state, Σ is
an input alphabet, δ ⊆ Q × Σ × Q is a transition relation,
and F ⊆ Q is a set of accepting states. A run of A over
a finite word σ = σ0σ1 . . . σn ∈ Σ∗ is a finite sequence
r = q0q1 . . . qn+1 ∈ Q∗, where (qi, σi, qi+1) ∈ δ for all

– 450 –

2022 International Symposium on Nonlinear Theory and Its Applications,
NOLTA2022, Virtual, December 12-15, 2022

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.

https://orcid.org/0000-0001-8224-3476
https://orcid.org/0000-0002-5837-8132
https://orcid.org/0000-0002-4009-270X

i = 0, 1, . . . , n. A finite word σ is accepted by A if there
exists a run r over σ that ends in an accepting state, i.e.,
qn+1 ∈ F. The set of all words accepted by A is denoted
by L(A) and is called the language accepted by A. The
language that is accepted by a finite automaton over finite
words is called a regular language. A finite automaton is
called deterministic if (q, σ, q′) ∈ δ and (q, σ, q′′) ∈ δ, then
q′ = q′′, for all q, q′, q′′ ∈ Q and σ ∈ Σ. If not, it is called
nondeterministic.

A Büchi automaton is a tuple B = (Q, q0,Σ, δ, F) that
has the same component as a finite automaton A. The se-
mantics of the Büchi automaton are defined over infinite
input words in Σω. A run of B over an infinite word σ =
σ0σ1 · · · ∈ Σω is an infinite sequence r = q0q1 · · · ∈ Qω,
where (qi, σi, qi+1) ∈ δ for all i = 0, 1, A run is ac-
cepting if at least one accepting state appears in it infinitely
many times. An infinite word σ is accepted by B if and
only if there exists at least one accepting run over σ. The
set of all words accepted by B is denoted by L(B).

According to [3], for a k-safety hyperproperty S, we
can build a deterministic finite automaton (DFA) A =

(Q, q0,Σ
k, δA, FA) that accepts a finite word of k-tuples

σ ∈ (Σk)∗ such that unzip(σ)* is one of the k-bad-prefixes
for S. In [3], such a DFA A is called a k-bad-prefix au-
tomaton for S.

3. Problem formulation

We consider a mobile robot moving in a workspace con-
sisting of N rooms. The work space is represented by a
graph G = (V, E), where where V = {v0, v1, . . . , vN−1} is a
set of vertexes and E ⊆ V ×V is a set of edges. Each vertex
vi denotes the room i and (vi, v j) ∈ E means that there is a
door between the room i and j by which the robot can en-
ter the room j from the room i. Without loss of generality,
we assume that the robot starts moving from the room 0.
Let AP be a set of atomic propositions and we introduce
a labeling function L : E → 2AP. Then, the behavior of
the robot is modeled by a finite automaton B = (V,Σ, v0, δ),
where V is the set of states and Σ = 2AP is the alphabet,
v0 ∈ V is the initial state, and δ : V × Σ → V is the transi-
tion function defined by

δ(v, σ) =

v′ if (v, v′) ∈ E ∧ σ = L((v, v′)),
undefined otherwise.

(1)
We assume that B is unknown and consider a problem such
that we check if the behavior of the robot always satisfies
an information-flow specification described by a k-safety
hyperproperty S. In the next section, we present a black
box checking based method to check if the mobile robot
satisfies the k-safety hyperproperty.

*For a finite word σ = σ0σ1 . . . σn ∈ (Σk)∗, unzip(σ) = {ti ∈ Σ∗ |1 ≤
i ≤ k, 0 ≤ ∀ j ≤ n. ti[j] = σ j[i]}, where σi[j] represents the j-th element
of σi ∈ Σk , i.e., σi = (σi[1], σi[2], . . . , σi[k]). The inverse function of
unzip is denoted by zip.

4. Black box checking of mobile robot

In this section, we propose a BBC method for the mobile
robot moving problem based on the L∗ algorithm [5].

When we check whether a given automaton B satisfies a
k-safety hyperproperty S, we introduce the technique called
self-composition for the emptiness check. The k-bad-prefix
automaton A for S is defined over Σk while B is defined
over Σ, and we cannot evaluate directly the emptiness of
L(B) ∩ L(A).

For a k-tuple θ = (θ1, . . . , θk), we denote θ[i] = θi for all
1 ≤ i ≤ k.

Definition 2 (k-fold self-composition) For a Büchi au-
tomaton B = (S , s0,Σ, δB, FB), the k-fold self-composition
of B is the Büchi automaton Bk = (S k, s′0,Σ

k, δ′B, F
k
B),

where s′0 := (s0, . . . , s0) ∈ S k, and δ′B is a transition rela-
tion. δ′B is defined by (s, σ, s′) ∈ δ′B iff (s[i], σ[i], s′[i]) ∈ δB

for all s, s′ ∈ S k, σ ∈ Σk, and i = 1, . . . , k.

Then, L(Bk) is given by

L(Bk) = {zip({t1, . . . , tk}) | t1, . . . , tk ∈ L(B)}.

Automata-theoretic model checking methods rely on the
construction of a product automaton. In our case, we need
to construct the product automaton between a k-fold self-
composition Bk and a k-bad prefix-automatonA.

Definition 3 (product automaton) The product automa-
ton P = Bk × A between a k-fold self-composition Bk =

(S k, s′0,Σ
k, δ′B, F

k
B), and a k-bad prefix-automaton A =

(Q, q0,Σ
k, δA, FA) is defined as P = (S k×Q, p0,Σ

k, δP, Fk
B×

FA), where p0 := (s′0, q0) is a initial state, and δP ⊆
(S k × Q) × Σk × (S k × Q) is a transition relation defined
by δP = {((s, q), σ, (s′, q′)) | (s, σ, s′) ∈ δ′B ∧ (q, σ, q′) ∈ δA}.

We have L(Bk ×A) = L(Bk) ∩ L(A).
Given a systemB and a k-safety hyperproperty S, we can

check whether B satisfies S by the following procedure:

1. Construct k-bad-prefix automatonA for S. A accepts
words σ ∈ (Σk)∗ such that unzip(σ) is one of k-bad-
prefixes for S.

2. Construct the k-fold self-composition Bk of B.

3. Construct the product automaton Bk × A whose lan-
guage is composed of the k-tuples of traces of B that
does not satisfy S.

4. Check whether L(Bk) ∩ L(A) = ∅. If it is empty, B
satisfies S. This is because the emptiness means that
all pairs of traces that are accepted by B cannot be a
bad-prefix for S . If not, there is a counterexample
σ ∈ (Σk)∗ in the intersection L(Bk) ∩ L(A), which
means that B does not satisfy S.

The flow of BBC for k-safety hyperproperties is shown in
Fig. 1. We showed the details of our algorithm in [8].

– 451 –

Automaton
learning by L∗

Check whether
M satisfies S

(model checking)

Check whether
L(M) = L(B).
(conformance

testing)

Check whether
B accepts the
traces from π.

B satisfies S B does not satisfy S

B, S

learnM for B

M satisfies S M does not satisfy S
+ counterexample π

L(M) , L(B)
+ counterexample σ
from the symmetric
difference between
L(M) and L(B)

no
+ counterexample σ

L(M) = L(B) yes

Figure 1: Black box checking for k-safety hyperproperties.
M corresponds to a conjectured automaton returned by the
L∗ algorithm. A conjectured automaton is referred to as
a hypothesis, and it converges to a correct hypothesis (the
system model B).

5. Illustrative example

In this section, we consider a work space depicted
in Fig. 2, where there are 9 rooms labeled by Ri (i =
0, 1, . . . , 8) and the arrow indicates the direction of the
movement of the robot. The robot starts at R0 marked in
gray. When the robot is in R0, we give the command which
room to move to, the right (R1) or the left (R5). Then, the
robot follows the command, and moves to either R1 or R5.
Let Y be a set of a “yellow room” and we assume that an in-
truder can observe the movement of the robot into a yellow
room but cannot identify the room. In Fig. 3, Y = {R2,R6}.

R0 R1

R2R3R4

R5

R6 R7 R8

Figure 2: Floor map of the example (Y = {R2,R6}).

A set of atomic propositions is AP = IH ∪ IL∪OL, where
IH , IL, and OL are sets of high-level input variables, low-
level input variables, and low-level output variables, re-
spectively. We consider the following atomic propositions:
v (move up or down), h (move left or right), y (move to a
yellow room), and r (when the robot is in R0, move to the
right room R1; if r is false, the robot moves to the left room
R5). We assume that IH = {r}, IL = {v, h}, and OL = {y}.
In other words, the intruder gets the information that the

robot is moving left or right, up or down, and movement
into a yellow room. On the other hand, he/she cannot get
information about which room the robot moved from R0 to
the left or right. The behavior of the robot is modeled as a
deterministic finite automaton shown in Fig. 3. The initial
state is s0. State si corresponds to the room Ri, for each
i = 0, 1, . . . , 8. The transitions are labeled by the inputs
σ ∈ Σ = 2AP.

s0 s1

s2s3s4

s5

s6 s7 s8

{h, r}{h}

{v, y} ∨ {v, y, r}

{h}
∨{h, r}

{h}
∨{h, r}

{v} ∨ {v, r}{v} ∨ {v, r}

{v, y} ∨ {v, y, r}

{h}
∨{h, r}

{v} ∨ {v, r}

{h}
∨{h, r}

{v} ∨ {v, r}

Figure 3: Finite automaton of the example.

We now verify that the behavior of the robot satisfies the
noninterference specification — the commands (r or ¬r)
in the room R0 do not interfere with the low-level output
y. In other words, the intruder who observes the low-level
variables can not infer information about the high-level in-
put r. This specification is a 2-safety hyperproperty whose
bad-prefix automatonA is shown in Fig. 4.

q0

q1

q2

∧ vπ ↔ vπ′
∧ hπ ↔ hπ′
∧ yπ ↔ yπ′

∧ vπ ↔ vπ′
∧ hπ ↔ hπ′
∧ yπ ↮ yπ′

∧ vπ ↮ vπ′
∨ hπ ↮ hπ′

⊤

⊤

Figure 4: The 2-bad-prefix automatonA for S

We consider several patterns Y of the yellow rooms and
performed a BBC to check that the behavior of the robot
satisfies S. Table 1 shows the sets Y considered in our ex-
periments and the results of BBC for each pattern.

First, we consider the case where Y = {R2,R6} (see
Fig. 2). Since we do not have a model of the system at the
beginning, we utilize the L∗ algorithm to learn the system
model. The final modelM5 has six states, and five of them
are accepting states (see Fig. 6). We have thatM5 satisfies
S (by model checking), and that M5 is equivalent to the

– 452 –

Table 1: Experimental results.
Y # hypothesis # states specification

{R0} 5 6 true
{R2} 3 4 false
{R2,R6} 5 6 true
{R0,R2,R6} 3 6 true
{R2,R6,R8} 7 9 false

system (by conformance testing). Therefore, we conclude
that the behavior satisfies the noninterference specification.
Thus, in the case where the BBS satisfies the specification,
the BBC algorithm continues to learn the system model un-
til it becomes equivalent to the BBS.

Second, we discuss the case where Y = {R2}. The final
modelM3 has four states, and three of them are accepting
states (see Fig. 7). We have that M3 does not satisfies S
because L(M2

3 × A) , ∅ (by model checking). A trace
π = ({h}, {h, r})({v}, {v, y}) is returned as its counterexample.
Next, we confirm that both of two traces t1 = {h}{v} and
t2 = {h, r}{v, y} such that t1, t2 ∈ unzip(π) are accepted by
the robot planning system. Therefore, we conclude that
the system does not satisfy the specification. The pair of
the two traces t1, t2 is a counterexample (see Fig. 5). Note
that the final conjectured modelM3 is not equivalent to the
BBS. Thus, in the case where the BBS does not satisfy the
specification, it is possible to conclude that the BBS does
not satisfy the specification without learning its model until
a model equivalent to the BBS is obtained.

R0 R1

R2R3R4

R5

R6 R7 R8

Figure 5: The pair of the two trace t1 = {h}{v} (blue) and
t2 = {h, r}{v, y} (red) in the case where Y = {R2}.

Figure 6: Learned automaton (Y = {R2,R6}).

6. Conclusion

In this paper, we focus on an extension of BBC to k-
safety hyperproperties, and applied it to mobile robot path

Figure 7: Learned automaton (Y = {R2}).

planning. We demonstrate the proposed mechanism with
an illustrative example.

In future work, we will extend the proposed BBC
method to hyperproperties described by more general
classes of hyperproperties.
Acknowledgments This work was supported by JST
CREST Grant Number JPMJCR2012.

References

[1] M. R. Clarkson and F. B. Schneider, “Hyperproper-
ties,” Journal of Computer Security, vol. 18, no. 6, pp.
1157–1210, 2010.

[2] B. Alpern and F. B. Schneider, “Defining liveness,” In-
formation Processing Letters, vol. 21, no. 4, pp. 181–
185, 1985.

[3] B. Finkbeiner, L. Haas, and H. Torfah, “Canonical
representations of k-safety hyperproperties,” in Proc.
2019 IEEE 32nd Computer Security Foundations Sym-
posium (CSF). IEEE, 2019, pp. 17–31.

[4] D. Peled, M. Y. Vardi, and M. Yannakakis, “Black box
checking,” IFIP Advances in Information and Commu-
nication Technology, vol. 28, pp. 225–240, 1999.

[5] D. Angluin, “Learning regular sets from queries
and counterexamples,” Information and Computation,
vol. 75, no. 2, pp. 87–106, 1987.

[6] M. Waga, “Falsification of cyber-physical systems with
robustness-guided black-box checking,” in Proc. the
23rd International Conference on Hybrid Systems:
Computation and Control, no. 11. New York, NY,
USA: Association for Computing Machinery, Apr.
2020, pp. 1–13.

[7] J. Shijubo, M. Waga, and K. Suenaga, “Efficient black-
box checking via model checking with strengthened
specifications,” Lecture Notes in Computer Science,
vol. 12974, pp. 100–120, Oct. 2021.

[8] N. Kuze, K. Seno, and T. Ushio, “Learning-based black
box checking for k-safety hyperproperties,” submitted
to IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences.

– 453 –

