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Abstract—In this paper, we investigate effectivity of the
randomness in memory patterns of a recurrent neural net-
work model referred as RNN hereafter. We have shown that
for the memory patterns with a certain structure, their basin
volumes and furthermore visiting measures of the basins
become smaller. In realizing a function of the memory
search based on chaotic wandering in a chaotic neural net-
work model referred as CNN, it is important to ensure that
basin volumes of the memory patterns and visiting mea-
sures of the basins are sufficiently large. Therefore, we in-
vestigate how to construct the memory patterns which gives
sufficiently large basin volumes of theirs in RNN, focusing
on the randomness in the memory patterns. We apply 11
kinds of the memory patterns with changing the ratio of the
randomness. As the randomness increases, basin volumes
of the memory patterns increase. The basin volumes of the
memory patterns without the randomness is quite smaller
than those of pseudo memory patterns. Thus, the random-
ness in the memory patterns is practical in ensuring that
their basin volumes are sufficiently large.

1. Introduction

Skarda and Freeman have shown that chaos could play
the important roles in a learning process and a recalling
process [1]. In addition, Nara and his colleagues have
investigated chaotic memory dynamics for cycle mem-
ory patterns related with memory search functions [2, 3].
Chaos would play important roles in realizing sophisti-
cated and excellent information processing occurring in
brain[4, 5, 6].

Inspired by Nara’s idea, in realizing memory search
functions based on chaotic wandering, Kuroiwa and his
colleagues have studied sensitive response of chaotic wan-
dering to memory pattern fragments in CNN [7, 8]. As
the complexity of chaotic wandering increases, the delo-
calizing effects in visiting attractor basins expands from an
intra-cycle of memory patterns to an inter-cycle, suggest-
ing that it is possible to construct a hierarchical structure
in the memory pattern space by controlling the complex-
ity. In addition, the chaotic wandering responds to mem-
ory pattern fragment sensitively and robustly, that is, once
a memory pattern fragment is applied to CNN, its chaotic
orbit quickly moves to the vicinity of the corresponding

memory pattern within several iteration steps.
The results suggest us that it is possible to realize a hier-

archical memory search with chaotic wandering by embed-
ding memory patterns with a hierarchical structure. How-
ever, for the memory patterns with a certain structure, their
basin volumes and furthermore visiting measures of the
basins become quite smaller.

In realizing the hierarchical memory search based on
chaotic wandering in CNN it is important to ensure that
basin volumes of the memory patterns and visiting mea-
sures of the basins are sufficiently large. Therefore, the
purpose of this paper is to investigate how to construct the
memory patterns which gives sufficiently large basin vol-
umes of theirs in RNN, focusing on the randomness in the
memory patterns.

2. RNN with Multi Cycle Memory Pattern

2.1. Associative Memory-type Recurrent Neural Net-
work Model

Let us explain RNN briefly. Let us denote an internal
state of the ith neuron at a time step t to be ui(t). The up-
dating rule of RNN is represented as follows:

ui(t + 1) =
N∑

j=1

wi jz j(t), (1)

where N denotes the total number of neurons and {wi j} rep-
resent synaptic connections from the jth neuron and the ith
one.

In this paper, the output of the ith neuron is given by the
following output function with continuous value of [−1, 1],

zi(t + 1) = tanh (βui (t + 1)) , (2)

where β corresponds to the steepness of the output function.

2.2. Orthogonal Learning Method

In this paper, we employ an orthogonal learning method
to determine synaptic connections. In general, basin vol-
umes of the memory patterns becomes larger with the or-
thogonal learning method. In addition, it is difficult to em-
bed multi cycle memory pattern because of the overlap be-
tween memory patterns. The orthogonal learning method
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Fig. 1: Eleven kinds of memory patterns with changing the ratio of the randomness. (a) Original memory patterns without
randomness. (b) Memory patterns including 10% randomness. (c) 20%. (d) 30%. (e) 40%. (f) 50%. (g) 60%. (h) 70%.
(i) 80%. (j) 90%. (k) 100% random patterns.

is written as follows:

wi j =

P∑
a=1

L∑
µ=1

v(a)(µ+1)
i (v(a)(µ)

j )† (3)

where v(a)(µ) denotes µth memory pattern vector among ath
cycle, (v(a)(µ))† is a conjugate vector of v(a)(µ), P represents
the total number of cycle and L represents the total number
of patterns for each cycle.

The conjugate vector is defined as follows:

(v(a)(µ))† =
P∑

b=1

L∑
ν=1

(O−1)(a)(µ)(b)(ν)v(b)(ν), (4)

where O−1 is an inverse matrix of the overlap matrix calcu-
lated by,

O(a)(µ)(b)(ν) =

N∑
k=1

v(a)(µ)
k v(b)(ν)

k . (5)

Note that applying the equation (3), P limit cycle mem-
ory patterns with a period of L are embedded in RNN.

3. Computer Experiments

3.1. Purpose and Method

The purpose of this paper is to investigate effectivity of
the randomness in memory patterns. In this paper, the ef-

fectivity means that basin volumes of the memory patterns
becomes sufficiently large. Therefore, we apply 11 kinds of
the memory patterns with changing the ratio of the random-
ness as shown in Fig. 1. Memory patterns are composed of
P = 3 cycles, each cycle contains L = 7 patterns, and each
pattern consists of 20× 30 pixels of ±1, implying N = 600.
In our memory patterns, the pattern overlap among an intra-
cycle is larger than that among an inter-cycle.

The basin of the attractor is a set of configurations which
converges into its attractor. Therefore, the basin volumes
are calculated as follows. We evaluate basin volumes of
each memory pattern in RNN starting from 20,000 different
random initial patterns. At each time step of the updating
of RNN, we check whether an output of RNN corresponds
to any one of memory patterns or not. If the output coin-
cides with any one of memory patterns, we regrade that the
system is in the cycle where the memory pattern belongs.
Note that we regard the inverse pattern as corresponding
memory pattern. On the other hand, when the system does
not coincide until 40 time steps, we stop the calculation and
we regard that either the system could not converge or the
system is among a pseudo cycle pattern. In this paper, we
denote the above state as being among pseudo cycle. The
summarized evaluation procedure of basin volumes is as
follows:
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Fig. 2: Basin volumes. (a) For each cycle pattern. (b) For total memory cycle and the pseudo cycle. ’A’, ’B’ and ’C’
indicate memory cycles, and ’D’ represents the pseudo cycle.

1. Choose one initial configuration from 20,000 different
random patterns.

2. Update RNN according to equation (1).

3. At each time set, check whether the output of RNN
corresponds to any one of memory patterns.

4. When the time step arrive at 40 steps, stop the cal-
culation and we regard that the system is among the
pseudo cycle.

5. Until all the 20,000 random patterns are applied, con-
tinue the procedure.

Through the computer experiments, we employ the same
parameter value of β = 100.

3.2. Basin Volumes

Results of the basin volumes are given in Fig. 2. In
Fig. 2(a), the basin volumes for each cycle patterns includ-
ing the pseudo cycle are depicted. In Fig. 2(b), the basin
volumes for total memory cycle and the pseudo cycle are
given. The indexes ’A’, ’B’ and ’C’ indicate memory cy-
cles, and ’D’ represents the pseudo cycle.

The basin volumes of the memory cycle patterns without
randomness is quite smaller than that of the pseudo cycle.
Indeed, the basin volume of the total memory cycle pattern
is 0.18, and that of the pseudo cycle is 0.82. On the other
hand, as the randomness increases more than 30%, the de-
pendence of the basin volumes on the randomness almost
disappears and the basin volumes of the memory patterns
becomes much larger than that of the pseudo cycle. For
30% randomness, the basin volume of the total memory
pattern is 0.70, and that of the pseudo cycle is 0.30. For

100% randomness, the basin volume of the total memory
pattern is 0.86, and that of the pseudo cycle is 0.14. The
basin volume of the total memory pattern monotonically
increases as the ratio increases. Therefore, the randomness
in the memory patterns is practical in ensuring that their
basin volumes are sufficiently large.

4. Discussions

Now, we consider reasons why the basin volume of
memory cycle patterns increases as the ratio of the random-
ness increases. We expect that the distance between mem-
ory patterns and a random pattern affects the fact. There-
fore, we evaluate the distance between the dirty A1 pat-
tern and each memory pattern for each ratio of the random-
ness. The dirty A1 pattern is constructed by inverting pix-
els which are selected in order from top left to bottom right
with the given number of pixels. The distance is calculated
by inner product between the dirty A1 pattern vector and
the conjugate vector of each memory pattern defined by
equation (4).

The results are given in Fig. 3. The horizontal axis rep-
resents the number of inverted pixels. The vertical axis
denotes the averaged distance. The distance between the
original A1 monotonically decreases to zero as the inverted
pixels increases regardless of the ratio of the randomness.
On the other hand, for the ratio of 0% and 10%, the distance
between the others is meaningful larger than zero. The fact
would encompasses that the basin volume of the pseudo
cycle increases as the radio of the randomness decreases.
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Fig. 3: Distance between the dirty A1 pattern vector and the conjugate vector of each memory pattern. The horizontal
axis represents the number of inverted pixels. The vertical axis denotes the distance.

5. Conclusions

In this paper, we investigate effectivity of the random-
ness in memory patterns of RNN. We evaluate basin vol-
umes of the memory patterns with changing the ratio of the
randomness. Results are as follows:

• The basin volumes of the memory cycle patterns
without randomness is quite smaller than that of the
pseudo cycle.

• As the randomness increases more than 30%, the de-
pendence of the basin volumes on the randomness al-
most disappears and the basin volumes of the memory
patterns becomes much larger than that of the pseudo
cycle.

Therefore, the randomness in the memory patterns is prac-
tical in ensuring that their basin volumes are sufficiently
large. In near future, we evaluate visiting measures of the
memory patterns in CNN with changing the ratio of the
randomness.
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