
Fast Verified Automatic Integration Algorithm using Complex Analysis

Naoya YAMANAKA†,♯, Takeshi OGITA‡, Masahide KASHIWAGI♮ and Shin’ichi OISHI♮,♯

†Graduate School of Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan

‡Department of Mathematics, Tokyo Woman’s Christian University
2-6-1 Zenpukuji, Suginami, Tokyo, 167-8585 Japan

♮ Faculty of Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan

♯ CREST, Japan Science and Technology Agency (JST)
Email: naoya yamanaka@suou.waseda.jp

Abstract—This paper is concerned with verified auto-
matic integration of a univariate function. For this pur-
pose, interval arithmetic and automatic differentiation have
widely been used to calculate the error of integral. In this
paper, we propose fast verified automatic integration algo-
rithm using an a priori error algorithm for rounding errors
in floating-point arithmetic and new algorithm for trunca-
tion error which is based on complex analysis. Numeri-
cal results are illustrated that proposed verified algorithm is
from 5 to 15 times faster than conventional verified method.

1. Introduction

Assume f (x) ∈ C∞ ([a, b]). We consider the following
two types of integrals with respect to x from a to b:

I1 =

∫ b

a
f (x) dx

I2 =

∫ b

a

f (x)
√

1 − x2
dx.

To verify these types of integrals using numerical computa-
tions, the evaluations of rounding error and truncation error
are needed.

Rounding error for verified computations is more or less
calculated by interval arithmetic, but the method is much
slower than pure floating-point arithmetic. Furthermore, to
get the upper bound, whole calculation by interval arith-
metic must be completed. To solve these problems, we
stress that Kashiwagi’s method, which is an a priori error
algorithm to calculate the upper bound of rounding errors
in floating-point arithmetic, is useful. After running some
algorithm with Kashiwagi’s method once, we only need to
execute pure floating-point arithmetic, so that verified com-
putation is expected to get much faster.

The evaluation of truncation error depends on the
quadrature in use. In this paper we adopt Gauss-Legendre
quadrature and Clenshaw-Curtis quadrature for I1 and
Gauss-Chebyshev quadrature for I2 respectively. Trunca-
tion error of these algorithms includes differential of high

order depending on the number of points n. Let us define
nopt be the minimum n satisfying the following equation:∣∣∣E(nopt)

∣∣∣ < ε,
where E(nopt) denotes truncation error of some quadrature
and ε does an absolute tolerance. For some tolerance to
calculate differential of high order, there are two possibil-
ities; automatic differentiation and the algorithm based on
complex analysis.

Automatic differentiation has been widely used for this
problem [2, 3]. It requires much computational effort when
the number of derivative order become large, because it
must use interval arithmetic throughout the computation.

Recent years, Petras has proposed an efficient verified
algorithm for these quadratures using complex analysis
[4, 5]. Execution time of his algorithm depends slightly on
the number of derivative order n so that when n is large, it
is relatively faster than automatic differentiation. Further-
more, his algorithm can calculate the upper bounds for ”dif-
ficult” problems. However, using his algorithm the num-
ber of points n sometimes becomes bigger than nopt and it
takes a lot of time.

In this paper, we propose a new algorithm to get the up-
per bound of truncation error using complex analysis. Us-
ing this algorithm, we can frequently obtain smaller n than
Petras’s algorithm, so that the proposed algorithm is expect
to be faster.

2. Framework of Verified Automatic Integration Algo-
rithm

We show the framework of verified automatic integration
algorithm as follows:

Algorithm 1
Framework of verified automatic integration algorithm
when user inputs the integral and relative tolerance.

Step 1 Get the order of the true value and estimate round-
ing errors.

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 512 -

Step 2 Rewrite inputted relative tolerance to absolute tol-
erance.

Step 3 Calculate the number of points n satisfying rewrit-
ten absolute tolerance.

Step 4 Calculate the integral using a n-point quadrature
with rounding error.

3. A Priori Error Algorithm for Rounding Error

In verified numerical computations, all rounding errors
that occur throughout the algorithm must be taken into ac-
count. Although rounding error can be counted by interval
arithmetic, it is much slower than pure floating-point arith-
metic. Moreover it is not until all calculations have done
in interval arithmetic that we could get the upper bound of
rounding errors.

To solve these problems, we emphasis that Kashiwagi’s
method, which is an a priori error algorithm to calculate the
upper bound of rounding errors in floating-point arithmetic,
is useful for verified algorithm. In the case that some nu-
merical algorithm computes the same function with a num-
ber of different points, with Kashiwagi’s method we can
expect the algorithm to become faster than that with inter-
val arithmetic, because the evaluations of the function are
executed by pure floating-point operations. Let us show the
detail of Kashiwagi’s method.

Consider the binary operation z̃ = g (x̃, ỹ). Denote x̃ and
ỹ in the intervals Ix and Iy by approximate values of x and
y in Ix and Iy, respectively. Suppose

|x − x̃| ≤ εx, |y − ỹ| ≤ εy

hold. In addition, assume the following inequality is satis-
fied:

|z̃ − g(x̃, ỹ)| ≤ |g(x̃, ỹ)| εM . (1)

Then, the following inequality holds for z ∈ Iz:

|z − z̃| ≤ |Dx| εx +
∣∣∣Dy

∣∣∣ εy + |Iz| εM .

Here, let us suppose the interval Iz holds

Iz ⊃
{
g(x, y) | x ∈ Ix, y ∈ Iy

}
,

and intervals Dx, Dy hold

Dx ⊃
{
∂g
∂x

(x, y) | x ∈ Ix, y ∈ Iy

}
Dy ⊃

{
∂g
∂y

(x, y) | x ∈ Ix, y ∈ Iy

}
.

The single operation z = g(x) is similar to the binary
operation.

We make the pair (I, ε) as

I : An input interval into the operation

ε : Collected errors until the operation,

and define every operation for the pair.
For examples, ”+” operator is defined by

(Ix, εx) +
(
Iy, εy

)
=

(
Ix + Iy, εx + εy +

∣∣∣Ix + Iy

∣∣∣ εM

)
.

To similar, ”·” operator is defined by

(Ix, εx) ·
(
Iy, εy

)
=

(
Ix · Iy, εx · εy +

∣∣∣Ix · Iy

∣∣∣ εM

)
.

With bottom-up calculation by recursive use of the de-
fined operation, we can get an upper bound of rounding er-
rors when evaluating a point of a function in floating-point
arithmetic.

Algorithm 2
Computation of an a priori error algorithm of rounding
errors when evaluating f (ξ) in floating-point arithmetic
(a ≤ ξ ≤ b, ξ ∈ F).

Step 1 Set I = [a, b].

Step 2 Make a pair x = (I, 0).

Step 3 Calculate y = f (x) with the pair.

Step 4 Output the second value εy of y.

4. Error Analysis of Truncation Error

4.1. Error Term of Some Quadratures

In this paper we adopt Gauss-Legendre quadrature and
Clenshaw-Curtis quadrature for I1 and Gauss-Chebyshev
quadrature for I2. Truncation error of these algorithms are
as follows:

• n point Gauss-Legendre quadrature∣∣∣∣E(n)
gl

∣∣∣∣ ≤ (b − a)2n+1 (n!)4

(2n + 1) [(2n)!]3
max
x∈[a,b]

∣∣∣ f (2n) (x)
∣∣∣

• n point Clenshaw-Curtis quadrature∣∣∣E(n)
cc

∣∣∣ ≤ 8
(n + 1)!

(
b − a

4

)n+2

max
x∈[a,b]

∣∣∣ f (n+1) (x)
∣∣∣

• n point Gauss-Chebyshev quadrature∣∣∣E(n)
gc

∣∣∣ ≤ 4π
(2n)!

(
b − a

4

)2n+1

max
x∈[a,b]

∣∣∣ f (2n) (x)
∣∣∣

4.2. Error Analysis of High Order Differential

Consider the simply connected domain on complex
plane D. Suppose that f (z) is analytic on D and z0 de-
notes the point on D. In addition, C denotes a simply closed
curve around z0. Then Goursat’s theorem is as follows (e.g.
[1]):

f (n) (z0) =
n!
2πi

∫
C

f (z)

(z − z0)n+1
dz

- 513 -

Re
Im Æa b

Figure 1: Figure of suitable D.

Next, suppose the line segment on real axis a ≤ x ≤ b in
C, then ∣∣∣ f (n) (x)

∣∣∣ ≤ n!
2π

∫
C

| f (z)| |dz|
|z − x|n+1

≤ n!LM
2πδn+1

,

which implies,

max
x∈[a,b]

∣∣∣ f (n) (x)
∣∣∣ ≤ n!LM

2πδn+1
.

Here, L denotes the length of C, M does maxz∈C | f (z)| and
δ does the minimum distance to the point of a ≤ x ≤ b.

A suitable domain of D and a suitable shape of C for
estimating differential of high order are as follows:

D : |z − t| ≤ δ for ∀t s.t. a ≤ t ≤ b

C : Closed curve on the edge of D.

Then δ become the radius of the circles whose centers are
a and b on Figure 1. Because M depends only on δ, let us
rewrite M as

Mδ := max
z∈C
| f (z)| .

Since the circular disk |z − t| ≤ δ is contained on D for the
fixed t in [a, b],∣∣∣ f (n) (x)

∣∣∣ ≤ n!2πδMδ
2πδn+1

=
n!Mδ
δn

holds, and therefore

max
x∈[a,b]

∣∣∣ f (n) (x)
∣∣∣ ≤ n!Mδ

δn

holds [1]D
We can rewrite truncation error of each quadrature as

follows:

• n point Gauss-Legendre quadrature∣∣∣∣E(n)
gl

∣∣∣∣ ≤ 5
4

(b − a) Mδ

(
b − a
√

15δ

)2n

• n point Clenshaw-Curtis quadrature∣∣∣E(n)
cc

∣∣∣ ≤ 8 (b − a) Mδ

(
b − a

4δ

)n+1

• n point Gauss-Chebyshev quadrature∣∣∣E(n)
gc

∣∣∣ ≤ π (b − a) Mδ

(
b − a

4δ

)2n

4.3. New Algorithm using Complex Analysis

Recent years, Petras has proposed a verification algo-
rithm for these quadratures [4, 5]. Execution time of his
algorithm depends slightly on n so that when n is large, it
is relatively faster than automatic differentiation. Further-
more, his algorithm can treat sensitive problems.

Using his algorithm, however, δ is fixed so that n some-
times becomes much bigger than nopt and it takes a lot of
time. To overcome them, we propose the algorithm that
calculates some variable δ.

Algorithm 3
Computation of the algorithm outputs adequate n when
user inputs the integral and absolute tolerance.

Step 1 Set N such that execution time of N point quadra-
ture is not exceed to that of calculate Mδ.

Step 2 For a certain δ, calculate Mδ. In addition, calculate
the number of n that satisfy inputted absolute error
using δ and Mδ. If n < N, outputs n.

Step 3 For some δ, do Step 2.

Step 4 Calculate function M̃(δ) by interpolation using cal-
culated some Mδ.

Step 5 Calculate minimal point of M̃(δ) as δ∗.

Step 6 Calculate Mδ∗ and the number of n, and output n.

Using this algorithm, we can frequently calculate faster
than Petras’s algorithm.

5. The Proposed Algorithm

Summarizing the above mentioned discussions, we pro-
pose the following algorithm.

Algorithm 4
Computation of proposed verified automatic integration al-
gorithm when user inputs the integral and relative toler-
ance.

Step 1 Calculate the upper bound of rounding error using
Kashiwagi’s method.

Step 2 Get the order of the true value.

Step 3 Rewrite inputted relative tolerance to absolute tol-
erance.

Step 4 Calculate the number of points n satisfying rewrit-
ten absolute tolerance and the upper bound of
rounding errors.

Step 5 Calculate the integral using a n-point quadrature
with pure floating-point numbers.

In this algorithm, Algorithm 2 is used in Step 1, and Al-
gorithm 3 is used in Step 2 and Step 4.

- 514 -

0 2 4 6 8 10 12 14
0

50

100

150

200

Relative Tolerance [−log10(x)]

R
at

io
 to

 e
xe

cu
tio

n
tim

e
of

 a
pp

ro
x.

 v
al

ue

Figure 2: Ratio of execution time using I1, Algorithm 5
normed to 1.

6. Numerical Results

• Linux (Fedora8), Memory 8GB, Intel Core 2 Extreme
3.0GHz (Use 1 Core Only), GCC with CRlibm.
(CRlibm is used to satisfy (1).)

• The Conventional Method :

– Rounding error : Interval arithmetic

– Truncation error : Petras’s algorithm [4]
Unfortunately, because we could not find C file
of Petras’s algorithm, we did our best to make
it based on the algorithm of chapter 3 in [4],
equally to the proposed algorithm as much as
possible.

We compare the proposed algorithm and the conven-
tional method with an approximated automatic integration
algorithm as follows:

Algorithm 5
Automatic integration algorithm for approximate value
when user inputs the integral and relative tolerance ε̃.

Step 1 Set the number of points n0.

Step 2 Calculate integral s0 using a quadrature with n0.

Step 3 Set k = 1.

Step 4 Set nk = 2nk−1.

Step 5 Calculate integral sk using a quadrature with nk.

Step 6 Check ∣∣∣∣∣ sk − sk−1

sk

∣∣∣∣∣ < ε̃. (sk , 0)

If satisfy, output sk.

If not, reset k = k + 1 and go back to Step 4.

0 2 4 6 8 10 12 14
0

50

100

150

200

Relative Tolerance [−log10(x)]

R
at

io
 to

 e
xe

cu
tio

n
tim

e
of

 a
pp

ro
x.

 v
al

ue

Figure 3: Ratio of execution time using I2, Algorithm 5
normed to 1.

Examples

I1 =

∫ 1

−1
sin(exp(x))dx = 1.455 · · ·

I2 =

∫ 1

−1

x exp(x)
√

1 − x2
dx = 1.775 · · ·

Figure 2 and 3 display the ratio of execution time for the
verification algorithms to that for Algorithm 5 for I1 with
Gauss-Legendre quadrature and I2 with Gauss-Chebyshev
quadrature, respectively. A glance at Figures 2 and 3 will
reveal that the execution time of the conventional method
are about 100 times slower than Algorithm 5. On the other
hand, the proposed algorithm is from 5 to 25 times slower.
It means that the proposed algorithm is from 5 to 15 times
faster than the conventional method.

References

[1] P. J. Davis and P. Rabinowitz: Methods in Numerical
Integration. Academic Press,. New York, 1975.

[2] G. F. Corliss, Computing Narrow Inclusions for Def-
inite Integrals, in: Scientific Computation and Pro-
gramming Languages, Teubner, Stuttgart, 1987, pp.
150-169.

[3] G.F. Corliss, L.B. Rall, Adaptive, Self-Validating Nu-
merical Quadrature, SIAM J. Sci. Statist. Comput. 8
(1987) 831-847.

[4] K. Petras: Self-Validating Integration and Approxi-
mation of Piecewise Analytic Functions, J. Comput.
Appl. Math. 145 (2002) 345-359.

[5] K. Petras: Principles of Verified Numerical Integra-
tion, J. Comput. Appl. Math. 199 (2007) 317-328.

- 515 -

	Navigation page
	Session at a glance
	Technical program

