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Abstract—We report chaotic properties of several
sounds including human voices and saxophone sounds.
We found that the male voice has a larger maximal
Lyapunov exponent than the female voice. In addi-
tion, by comparing the soprano, the alto, and the tenor
saxophones, we found that the instruments with lower
pitches tend to have larger maximal Lyapunov expo-
nents.

1. Introduction

Chaotic properties have been pointed out in sounds
of reed type wind instruments, especially human
voices, a clarinet and a saxophone. For example,
Tokuda [1, 2] showed that the sounds of Japanese
vowel /a/ are chaotic and have low-dimensional at-
tractors. The correlation dimensions are estimated by
Keefe and Laden [3, 4] for several types of the sounds
of saxophones. The results show that they would be
strange attractors.

However, few studies are found about differences of
Lyapunov exponents depends on kinds of musical in-
struments. In this study, the two human voices which
are by the tenor singer (male) and by the female vocal-
ist, and sounds of three types of saxophones (soprano,
alto and tenor) will be analyzed.

2. Data preparation

In this study, we selected datasets that are available
for research without copyright problems. Real World
Computing (RWC) database [5, 6] was developed by
the Real World Computing Partnership (RWCP) in
Japan. The database was recorded carefully under the
controlled environment by the acoustics experts, and
can be used freely for only research purposes. These
data sets are provided in Windows wav file (44.1 kHz,
16bit monoral). Musicians’ properties and details of
musical instruments are concealed. We used the same
A, pitch sounds (440 Hz) which is used of the tuning
in an orchestra. Each size of the data is about one
second (44100 points).

We plots used 500 points in the delay coordinates of
the sounds are shown in Fig. 1. To enhance the visi-
bility, we selected the delay dimension d = 6 which is
not necessarily the best delay. We can find that each
instrument has specific patterns in the delay coordi-
nates.
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Fig. 1: Plots the sounds in the delay coordinates.
The wide varieties of attractors are found.

It is important that stationarity of the time series.
Hence, we verified the stationarity as following steps.
(1) We searched a proper delay which is related to
the first minimum of mutual information [7]. We re-
garded the delay d as the best delay. (2) We subsam-

pled the given time series every d points. (3) We es-
timated the embedded dimension by the false nearest
neighbors (FNN) method [8]. The concept of the FNN
method is as follows. If we assume a wrong embedded
dimension, neighboring points on that dimension will
be not neighboring points in the higher dimensions.
So, checking these false nearest neighbors will give the
best embedding dimension n. For the test, we used
TISEAN [9] programs by Rainer Hegger et al. and we
used 5% for the rate of errors. (4) We tested the sta-
tionarity by Kennel’s method [10]. We regarded less
than 2.326 of the test value as a stationarity dataset.
The results are presented in Table 1.

Name d | n | Length
Soprano saxophone 7110 1285
Alto saxophone 9110 1555
Tenor saxophone 8 | 10 1375
Human voice (male) 7110 1428
Human voice (female) | 8 | 12 2250

Table 1: Estimated delay and embedded dimensions
of sounds of musical instruments by using mutual in-
formation and FNN method.

A surrogate test is one of the statistical methods
widely used in nonlinear time series analysis. When
we want to evaluate a property of a time series we
are interested in, we make many data sets called
“surrogate data sets” by preserving the property of
null-hypothesis and randomizing the given time series.
Then, we compare the original time series with sur-
rogate data sets by a statistical test. If we find to a
difference as a result, it means the null-hypothesis is
rejected. A difficult point for making surrogate data
sets is how to randomize the original data by preserv-
ing the property of null-hypothesis.

Now, we used three different surrogate tests with the
Wayland statistic [11] as a test statistic. These tests
are phase-randomized Fourier-transform surrogate[12],
iterative amplitude adjusted Fourier-Transform sur-
rogate [13], and pseudo periodic surrogate (Small’s
test) [14]. The results show that these sounds are
nonlinear time series and have determinism beyond
pseudo-periodicity.The results of pseudo-periodic sur-
rogate tests for the human voice are shown in Fig. 2
as examples. The solid lines in Fig. 2 indicate the test
statistic for the original dataset. These lines, for most
embedding dimensions, are out of the intervals indi-
cated by the two dashed-dotted lines, which indicate
the maximum and minimum values obtained using the
39 surrogate datasets for the test statistic.
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Fig. 2: Results of pseudo-periodic surrogate tests
for human voice. The solid lines in Fig. 2 indicate
the test statistic for the original dataset. These lines,
for most embedding dimensions, are out of the inter-
vals indicated by the two dashed-dotted lines, which
indicate the maximum and minimum values obtained
using the 39 surrogate datasets for the test statistic.

3. Estimation of maximal Lyapunov exponent

We calculate the maximum Lyapunov exponents of
the sounds by using the Kantz’s method [15]. In Fig.
3, we show the average distance between a selected
point and neighboring points with time in delay coor-
dinates. In the linear part that is about to saturate
in a logarithmic plot, the slope of linear part gives the
maximal Lyapunov exponent +.
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Fig. 3: Estimation of the Lyapunov exponent by us-
ing Kant’z method. The number of neighboring points
is 8 fixed. The slope of linear part in these logarithmic
plots gives the maximal Lyapunov exponent.

We confirmed the positive maximal Lyapunov ex-
ponents in the human voices and saxophone sounds.
The Lyapunov exponents are shown in Table 2. These
results show the chaotic properties in these sounds.

| Musical instrument | 7]
Human voice (male) 223.0
Human voice (female) | 172.3
Soprano saxophone 87.6
Alto saxophone 111.9
Tenor saxophone 144.7

Table 2: Estimated Lyapunov exponents

4. Disucussion

We found that the male voice has a larger maximal
Lyapunov exponent than the female voice, although
sample sounds have the same A4 pitch. By comparing
the soprano, the alto, and the tenor saxophones, we
found that the instruments with lower pitches tend to
have larger maximal Lyapunov exponents.

We think that a reason for this tendency is instabil-
ity of sounds by deviation from the most appropriate
pitch of the musical instrument. Hence, this tendency
may be independent of the type of the instrument.
Conversely, Lyapunov exponents of sounds would give
the most appropriate pitch of the musical instrument.

5. Conclusion

We confirmed chaotic properties of several sounds
including human voices and saxophone sounds by
Kantz’s method. We found that the male voice has
a larger maximal Lyapunov exponent than the female
voice. In addition, by comparing the soprano, the alto,

and the tenor saxophones, we found that the instru-
ments with lower pitches tend to have larger maximal
Lyapunov exponents.
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