
Implementation of Communication Avoiding Technique on Krylov Subspace
Method

Gong Chen1, Yoshihisa Fujita2, Taku Itoh3, Hiroaki Kurokawa1 and Soichiro Ikuno1

1 School of Computer Science, Tokyo University of Technology 1404-1 Katakura, Hachioji 192-0982, Japan
2 Department of Energy Engineering and Science Nagoya University, Toki, Gifu 509-5292, Japan

3 College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
Email: g2115014@edu.teu.ac.jp, ikuno@cs.teu.ac.jp

Abstract—In the present study, the communication
avoiding technique is numerically evaluated. Generally, the
algorithm of Krylov subspace method is very simple, so
that the method have a good chemistry with parallelization
techniques. However, communication time becomes top
issue to derive the high performance calculation. To avoid
the communication issue, we have implemented the k−skip
conjugate gradient (CG) method, and the numerical charac-
ter have been evaluated. In case of k−skip CG method, the
linear system can be solved by k = 1 and k = 2. However,
the residual norm behaves unstable as increase the value of
k. This is because that the orthogonality of residual vector
vanishing on k−skip account.

1. Introduction

Recently, the performance of the Central Processing Unit
(CPU), the Graphics Processing Unit (GPU) and Many In-
tegrated Core (MIC) have increased in each of the past ten
years. In addition, these devices are constituted by mul-
titudes of processing units. Therefore, a parallelization
scheme must be implemented on the simulation code in or-
der to educe the performance of the devices.

As is well known that the speedup of the parallelization
technique is governed by Amdahl’s law. The simulation
code can be divided into two parts. One is the paralleliz-
able part, the other part consist of preprocessing, sequential
calculation part. Thus, the value of speedup S is defined by
following equation.

S =
1

1 − r +
r
n

. (1)

Here, r denotes a ratio of parallelizable part in the code,
and n denotes a number of process. Equation (1) indicates
that although the calculation cost decreases as increases the
number of processing unit, the lower limit inevitably exist
i.e. 1 − r. According to the idea of Amdahl’s law, the cal-
culation time decreases as the number of processing unit
increases. However, the communications between the pro-
cessing units are excluded. Generally speaking, the com-
munication time increases as number of processing unit in-
creases.

Let x0 be an initial guess.
Set r0 = b − Ax0
Set p0 = r0
for k = 0, 1, · · · , until ∥rk∥2/∥b∥2 ≤ ε do
αk =

(rk, rk)
(pk, Apk)

xk+1 = xk + αk pk

rk+1 = rk − αkApk

βk =
(rk+1, rk+1)

(rk, rk)
pk+1 = zk+1 + βk pk

end for

Figure 1: The algorithm of the conjugate gradient (CG)
method. Here, A denotes a coefficient matrix of a linear
system and b denotes a known vector.

The conjugate gradient (CG) method is one of a solver
for a large-sparse linear system. In addition, the algorithm
of CG method is very simple, and the most of all the pro-
cedure of the method is constituted by addition of vectors,
inner products and multiplication of matrices and vectors
as shown in Fig. 1. These operations are very easy to get a
high performance by parallelization. However, the commu-
nication between processing units (PUs) must be necessary
for parallelized inner products calculation, and the amount
of the communication time increases as the size of the sys-
tem increase. That is to say, the communication time is
bottle neck for the effective parallelization [1, 2].

A variable preconditioning method has been developed
as a new preconditioning strategy for Krylov subspace
methods [3]. The Variable Preconditioned (VP) Krylov
subspace method has two nested iteration for main Krylov
subspace method and variable preconditioning for Krylov
subspace method are called as outer-loop and inner-loop.
In the preconditioning procedure, the residual equation is
solved roughly by using some iterative method with only a
few iteration. Therefore, the algorithm of VP Krylov sub-
space method is very simple, so that the method have a
good chemistry with parallelization techniques. However,
the cost of communication i.e. moving data between levels
of the memory hierarchy and each processor, is consider-

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 820 -

 0

 5

 10

 15

 20

 25

case(1) case(2) case(3)

C
o

m
p

u
ta

ti
o

n
 T

im
e

 [
s
e

c
]

Communication Time
Calculation Time

3.344(55.5%)

2.68(44.5%)

10.001(60.7%)

6.487(39.3%)

15.549(60.8%)

10.023(39.2%)

Figure 2: The computation time of CG for various types of
linear system.

ably higher than the cost of the computations. Thus, in
order to enhance the performance of VP Krylov subspace
method, new strategies for the communication bound ker-
nels should be explored to minimize communication and
data movement [5, 6, 7, 8].

The purpose of the present study is to implement
Krylov subspace method with communication avoiding
techniques, and to evaluate the numerical characters of the
method.

2. Communication Time of Krylov Subspace Method

Let us first investigate the communication time of stan-
dard CG on GPU. Three types of coefficient matrices are
adopted for the evaluation, and the dimension size of the
matrices are case(1): 428650, case(2): 6,010,480, case(3):
10,641,602, respectively [9]. The computation time of the
standard CG on GPU is shown in Fig. 2. This figure indi-
cates that the communication time increases as the dimen-
sion size increases. Furthermore, about 55 % to 60 % of
total computation time spent for the communication time
of transferring data between CPU and GPU global mem-
ory. That is to say, the communication time is bottle neck
for the effective parallelization.

In the original variable preconditioned Krylov subspace
method has the sufficient condition for convergence. The
residual of the linear system converges if the relative resid-
ual norm of inner-loop satisfies the inequality in each steps.
The condition is derived from the behavior of monotonic
decreases of GCR. That is to say, the solver for the outer-
loop should be included the behavior of monotonicity. In
the previous study, we have extended the algorithm of vari-
able preconditioned method using various Krylov subspace
method for outer-loop, and the convergence characteris-
tics of VP Krylov subspace method have been numeri-
cally evaluated [4]. The algorithm of variable precondi-
tioned conjugate gradient (VPCG) method is shown in Fig.

Let x0 be an initial guess.
Set r0 = b − Ax0
Roughly solve Az0 = r0 using some iterative
method
Set p0 = z0
for k = 0, 1, · · · , until ∥rk∥2/∥b∥2 ≤ ε do
αk =

(rk, zk)
(pk, Apk)

xk+1 = xk + αk pk

rk+1 = rk − αkApk

Roughly solve Azk+1 = rk+1 using some iterative
method
βk =

(rk+1, zk+1)
(rk, zk)

pk+1 = zk+1 + βk pk

end for

Figure 3: The algorithm of variable preconditioned conju-
gate gradient (VPCG) method.

3. In the preconditioning procedure (inner-loop), various
Krylov subspace method was adopted because Krylov sub-
space method is easy to parallelize than stationary iterative
method such as SOR method. As the results, the commu-
nication time of parallelized inner products increase.

3. k−skip Conjugate Gradient Method [6]

The communication avoiding technique is one of a set-
tlement for communication bottle neck issue for the paral-
lelization CG. Although the algorithm of Krylov subspace
method with the communication avoiding technique is dif-
ferent from original method, the theoretical methodology is
equivalent. In the technique, inner products is rewritten to
the recurrence formula using the basis of Krylov subspace,
and the inner products are transcribed into scalar calcula-
tion. As the results, communications between PUs can be
gathered in only one time. As is obvious the communica-
tion time for the parallelization CG can be reduced.

Let us derive the k−skip conjugate gradient method [6].
The inner product (ri+1, ri+1) can be rewritten by using αi =

(ri, ri)/(ri, Api) as follows.

(ri+1, ri+1) = α2
i (Api, Api) − (ri, ri). (2)

Other inner products can be also rewritten as follows.

(pi+1, A j pi+1) = (ri+1, A j pi+1) + βi(pi, A jri)
+ β2

i (pi, A j pi) − αiβi(pi, A j+1 pi), (3)
(ri+1, A j pi+1) = (ri+1, A jri+1)

+ (ri, A j pi) − αiβi(pi, A j+1 pi), (4)
(ri+1, A jri+1) = (ri, A jri)

− 2αi(ri, A j+1 pi) + α2
i (pi, A j+2 pi). (5)

The values of left hand side of (2), (3), (4) and (5)
can be calculated by using i−th step values αi, βi,

- 821 -

Let x0 be an initial guess.
Set r0 = b − Ax0
Set p0 = z0
n = k
for while |γk |/∥b∥2 ≤ ε do

calculate rn, Arn, A2rn, · · · , Ak rn

calculate pn, Apn, A2 pn, · · · , Ak pn, Ak+1 pn

calculate γn

calculate δn,1, · · · , δn,2k

calculate ηn,1, · · · , ηn,2k, ηn,2k+1
calculate ζn,1, · · · , ζn,2k, ζn,2k+1, ζn,2k+2
for i = n, 1, · · · , n + k do
αi = γi/ζi,1
βi = αi ζi,2/ζi,1 − 1
γi+1 = βi γi

for j = 1, · · · , 2k − 2(i − n) do
δi+1, j = δi, j − 2αi ζi, j+1 + α

2
i ζi, j+2

ηi+1, j = δi+1, j + βi ηi, j+1 − αi βiζi, j+1
ζi+1, j = ηi+1, j + βi ηi, j + β

2
i ζi, j − αi βiζi, j+1

end for
xi+1 = xi + αi pi

ri+1 = ri − αiApi

pi+1 = ri+1 + βi pi

end for
n = n + k + 1

end for

Figure 4: The algorithm of k−skip conjugate gradient
method.

(pi, A j pi), (pi, A j+1 pi), (pi, A j+2 pi), (ri, A j pi), (ri, A j+1 pi)
and (ri, A jri). Especially, in CG method, (i + 1)−th step
values (ri+1, ri+1), αi+1 and βi+1 can be calculated using
(pi+1, Api+1) and (pi+1, A2 pi+1), and the step can be for-
warded one step without inner product calculation. By
using following notations, the algorithm of k−skip CG
method can be derived as shown in Fig. 4.

γi = (ri, ri),
δi, j = (ri, A jri),
ηi, j = (ri, A j pi),
ζi, j = (pi, A j pi).

From Fig. 1 and Fig. 4, we can derive the number of op-
eration of the methods as shown in Table 1. We can see
from Fig. 4 and Table 1 that the number of operation of
k−skip CG is higher than that of CG. However, inner prod-
uct communication occurs only one time in unit iteration
[6].

4. Numerical Results

In this section, k−skip CG method is evaluated by using
two types of tridiagonal matrices. The values of subdiago-
nals are set to −1, and main diagonals are set to 25 (Type

Table 1: Number of operations of CG and k−skip CG in
k + 1 iterations. Here, NMV, Nin, Ncomm, Ns and Nv de-
note number of matrix vector multiplication, number of in-
ner product, number of communication for inner product,
number of scalar operation and number of addition of vec-
tor, respectively.

Method NMV Nin Ncomm Ns Nv

CG k + 1 2k + 2 2k + 2 O(k) 3k + 3
k−skip 3k + 2 3k + 3 1 O(k2) 3k + 3

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 50 100 150 200 250 300

R
es

id
ua

l N
or

m

Iteration Number

k=1
k=2
k=3

Figure 5: The residual histories of k−skip CG method. The
values main diagonals of the coefficient matrix are 25.

1) and 2.5 (Type 2). The condition number of the matri-
ces become 1.17 (Type 1) and 8.97 (Type 2), respectively.
That is to say, we can control the illposedness of the linear
system by changing the value of main diagonals. More-
over, elements of right hand side vector are set to 1, and
termination condition is set to 10−10.

It is known that (2) causes the calculation instability be-
cause the equation includes subtraction. To avoid the trun-
cation error, following procedure is adopted for γi calcula-
tion [1, 6].

tmp0 = γi − αi ηi,1,

tmp1 = ηi,1 − αi ζi,2,

γi+1 = tmp0 − αi tmp1.

The residual histories of k−skip CG method are shown
in Fig. 5 (Type 1) and Fig. 6 (Type 2). In case of Type
1, the linear system can be solved by k = 1 and k = 2.
However, the residual norm behaves unstable as increase
the value of k. This is because that the orthogonality of
residual vector vanishing on k−skip account. This tendency
is significantly enhanced in case of Type 2 because of the
high condition number (see Fig. 6). As the results, the
iteration number increase as the value of k increases. On
the other hand, the number of communication decreases as
the value of k increases. Thus, the effective parallelization
should be expected.

- 822 -

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

 0 50 100 150 200 250 300

R
es

id
ua

l N
or

m

Iteration Number

k=1
k=2
k=3

Figure 6: The residual histories of k−skip CG method. The
values main diagonals of the coefficient matrix are 2.5.

The detail results of the parallelization will be presented
at the NOLTA2015.

5. Conclusions

In the present study, we implemented CG method on
GPU and evaluated the communication time of the method.
Furthermore, numerical character of k−skip CG method
have been evaluated.

Conclusions obtained in this study are summarized as
follows.

• In case of standard CG method, about 55 % to 60 %
of total computation time spent for the communica-
tion time of transferring data between CPU and GPU
global memory. That is to say, the communication
time is bottle neck for the effective parallelization.

• Although the linear system can be solved by k−skip
CG method with k = 1 and k = 2, the residual norm
behaves unstable as increase the value of k. This is
because that the orthogonality of residual vector van-
ishing on k−skip account.

• The number of communication decreases as the value
of k increases. Thus, the effective parallelization
should be expected.

In the future work, k−skip CG method is implemented
on variable preconditioning Krylov subspace method to re-
duce the communication time of the method. Moreover,
stabilization technique will be implemented on the method
as well.

Acknowledgment

This work was supported in part by Japan Society for the
Promotion of Science under a Grant-in-Aid for Scientific
Research (C) No. 26390135.

References

[1] SAAD, Youcef, “Practical use of polynomial precon-
ditionings for the conjugate gradient method”, SIAM
Journal on Scientific and Statistical Computing, 1985,
6.4: 865-881.

[2] MEURANT, Gerard, “Multitasking the conjugate gra-
dient method on the CRAY X-MP/48”, Parallel Com-
puting, 1987, 5.3: 267-280.

[3] K. Abe, S. L. Zhang, “A variable preconditioning using
the SOR method for GCR-like methods,” Int. J. Numer.
Anal. Model. 2, No.2, pp. 137-151, 2005.

[4] S. Ikuno, Y. Kawaguchi, T. Itoh, S. Nakata, and K.
Watanabe, “Iterative Solver for Linear System Ob-
tained by Edge Element: Variable Preconditioned
Method With Mixed Precision on GPU”, IEEE Trans.
Magn., 48, No. 2 (2012) 467-470.

[5] Mark Hoemmen, “Communication-Avoiding Krylov
Subspace Methods,”, The doctoral dissertation of Uni-
versity of California at Berkeley, Berkeley, CA, USA,
2010.

[6] Toru Motoya and Reiji Suda, “k-skip Conjugate Gra-
dient Methods: Communication Avoiding Iterative
Symmetric Positive Definite Sparse Linear Solver For
Large Scale Parallel Computings”, IPSJ SIG Tech.
Rep., 2012, Vol.2012-HPC-133 No.30 (Japanese).

[7] DAzevedo, E. F., V. Eijkhout, and C. H. Romine,
“Lapack Working Note 56 Conjugate Gradient Algo-
rithms with Reduced Synchronization Overhead on
Distributed Memory Multiprocessors”, Technical Re-
port, Mathematical Sciences Section, Oak Ridge Na-
tional Laboratory, 1999.

[8] CHRONOPOULOS, A. T., GEAR, Charles William,
“s-Step iterative methods for symmetric linear sys-
tems,” Journal of Computational and Applied Mathe-
matics, 1989, 25.2: 153-168.

[9] The University of Florida Sparse Matrix Collection, T.
A. Davis and Y. Hu, “ACM Transactions on Mathemat-
ical Software,” Vol. 38, Issue 1, 2011, pp 1:1 - 1:25.

- 823 -

	Navigation Page
	Session at a glance

