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Abstract—In this paper, we consider a design
problem of a simple spiking oscillator with a desired
inter-spike-interval (ISI) density. Our approach to the
problem is based on a mapping procedure. The spiking
oscillator behaves chaotic motions and generates vari-
ous spike trains. It is important to study the relation-
ship between a dynamic property of the oscillator and
a static property on ISI density not only for scientific
investigations, but also for engineering developments.
We provide a simple spiking oscillator with piecewise
constant vector fields. The dynamics of the system is
governed by 1-D piecewise linear return map, there-
fore the rigorous analysis can be performed. We show
an example of spiking oscillators with a conditional ISI
density, its synthesis strategy is based on a probability
density function of the 1-D return map.

1. Introduction

Chaotic spiking oscillators (abbr. CSO) have been
studied in interesting works [1]-[3]. CSOs relate con-
siderably to some spiking neuron neuron models [4].
The spiking neuron models have integrate-and-fire op-
eration that generates a instantaneous pulse signal and
reset a state variable instantaneously at the moment
when the various reaches a switching threshold. Re-
peating the operations, CSOs generates a variety of
spiking-trains. Study of the spiking-trains is impor-
tant to develop some researches for information pro-
cessing of the human brain, for pulse based communi-
cation systems and so on[5][6]. Also CSOs are included
in hybrid dynamical systems with various nonlinear
phenomena and its coupled systems can be developed
into efficient applications of neural networks [7]. The
analysis of spiking-trains and the simple circuit imple-
mentation of CSOs are important.

First, this paper presents a statistical analysis of
the inter-spike-intervals (abbr. ISIs) generated from
a CSO with piecewise constant vector field. The cir-
cuit consists mainly of two capacitors, two nonlinear
voltage-controlled current sources and dependent im-
pulsive switches. From the state space description, we
derive the embedded return map which governs the
qualitative behaviour of the system. The statical anal-
ysis of the return map results in the calculation of the
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Figure 1: A chaotic spiking oscillator.

invariant density. We derive the invariant density of
the 1-D return map and show that the probability dis-
tribution of the ISIs for the CSO under consideration
can be calculated from the invariant density of the re-
turn map. Second, we shows an example of synthesis
procedure for a spiking oscillator with a conditional
ISI probability density.

2. A chaotic spiking oscillator with piecewise-
constant vector field

Figure 1 shows the circuit model of the simple
chaotic spiking oscillator. The triangle labeled 1 (−1,
respectively) is a linear amplifier with gain 1 (−1, re-
spectively). The triangles labeled ”+ −” are com-
parators. These amplifiers and comparators are real-
ized by an operational amplifier with sufficiently large
input impedance. Trapezoids are differential voltage-
controlled transconductance amplifiers and their out-
put currents are i1 and i2, respectively. They are char-
acterised by

i1 = Ia · sgn(v2 − E),
i2 = Ia · sgn(v2 − v1),(

sgn(x) =

{
1 for x ≥ 0,
−1 for x < 0.

) (1)

where v1 and v2 are voltages across the capacitors C1

and C2, respectively. Ia is constant which is controlled
by a bias current of transconductance amplifiers. Con-
necting two capacitors to both output terminals of the
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transconductance amplifiers, we obtain a two dimen-
sional nonlinear system. When S is opened, the circuit
dynamics is described by

ẋ = α · sgn(y − 1),
ẏ = α · sgn(y − ax),

(2)

where ”·” represents the derivative of τ , α is a con-
stant value and the following dimensionless variables
and parameters are used.

τ =
I0

C2E
t, x =

C1

C2E
v1, y =

1

E
v2,

a =
C2

C1
, α =

Ia
I0

> 0,
(3)

where I0 is a virtual constant current for normalizing.
Here, we assume the following parameter condition:

a >

√
2 + 1√
2− 1

. (4)

In this parameter range, Equation (2) has unstable
rect-spiral trajectories as shown in Fig. 2. The tra-
jectory on the phase space moves around the singular
point ( 1a , 1) divergently and it must reach to the half
line lTh = {(x, y)|y = ax, y < 0} as shown in the left
figure of Fig. 2.
In this circuit in Fig. 1, M.M. is a monostable multi-

vibrator which outputs pulse signals to close the switch
S and to open S̄ instantaneously. Two comparators
detect the impulsive switching condition. If v2 ≤ v1 or
v2 ≥ 0, the switch S is opened and S̄ is closed. For the
meantime, the voltage v1 and v2 is stored to CC1 and
CC2, respectively. If v2 > v1 and v2 < 0, then M.M.
is triggered by the pair of comparators, and the switch
S is closed and S̄ is opened instantaneously. At that
time, the voltage v1 and v2 is reset instantaneously to
the inverse voltage −v1 and −v2, respectively. that is,

[v1(t
+), v2(t

+)]T = [−v1(t),−v2(t)]
T

for v2(t) > v1(t) and v2(t) < 0,
(5)

where t+ ≡ limε→0{t+ ε}.
Because the parameter condition (4), the trajec-

tory must reach lv ≡ {(v1, v2)|v2 = v1, v2 < 0} when
the switchings occur. Namely, the normalized trajec-
tory must hit lTh, and jumps from (x(Tn), y(Tn)) to
(−x(T+

n ),−y(T+
n )) as shown in the left figure of Fig.

2, where Tn is the n-th switching moments.
Consequently, Eqn. (2) and (5) with the condition

(4) are transformed into

{
ẋ = α · sgn(y − 1),
ẏ = α · sgn(y − ax),

for S = off,

[x(τ+), y(τ+)]T = [−x(τ),−y(τ)]T

for y(τ) > a · x(τ) and y(τ) < 0,

(a >

√
2 + 1√
2− 1

).

(6)
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Figure 2: Behavior of Trajectories on the phase space
and a typical chaos attractor. (a � 5.84)

Now the system is characterized by only two parame-
ters a and α. The right figure of Fig. 2 shows a typical
chaotic attractor with a � 5.84.

The transconductances are implemented by OTAs
(LM13700). Realization procedure of differential
voltage-controlled transconductance amplifiers by us-
ing OTAs can be found in literature [8]. The monos-
table multivibrator, the comparators and the ana-
log switches are implemented by IC package of 4538,
LM339 and LF398, respectively.

3. Embedded return map

The exact piecewise solution of Eqn. (6) for S =off
can be depicted. Here, let us focus on a trajec-
tory starting from origin at τ = 0 (see Fig. 2).
The trajectory rotates divergently around the singu-
lar point ( 1a , 1) and reaches the switching threshold.
A y−coordinate of the reaching point is obtained as
−(a+1

a−1 )
2 + 1. Here we define A ≡ (a+1

a−1 )
2 > 1 and

l ≡ {(x, y)|−1 < y < 0, y = ax}. And we consider the
case of −A + 1 > −1, that is, the minimum value of
y is grater than −1. In this case, the trajectory start-
ing from l must jumps instantaneously to the symmet-
ric point of the origin, the trajectory rotates k−times
(k = 1, 2, 3, · · ·) around the singular point and it must
return to l. We henceforth consider the following pa-
rameter range with (4):

1 < A ≤ 2. (7)

If we choice l as Poincaré-section, we can de-
fine one dimensional return map f from l to it-
self. Letting (x(Tn), y(Tn)) be the starting point,
(x(Tn+1), y(Tn+1)) be the return point as shown in
left figure of Fig. 2. And letting any points on l be
represented by its y-coordinate, f is defined by

f : l �→ l, yn+1 = f(yn), (8)

where we rewrite yn = y(Tn).
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Figure 3: Chaotic return maps. (left: A = 1.8(a �
6.85), right: A → 2(a � 5.84)).

By using piecewise-constant trajectories and linear
algebraic procedure, we obtain an explicit expression
for the function f :

f(yn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−A(yn + 1) + 1
for 1

A − 1 < yn ≤ 0,
−A2(yn + 1) + 1

for 1
A2 − 1 < yn ≤ 1

A − 1,
...

−Ak(yn + 1) + 1
for 1

Ak − 1 < yn ≤ 1
Ak−1 − 1,

...
(k = 1, 2, 3, · · ·),

(9)

where each borders of the piecewise maps, Thk = 1
Ak −

1, are derived by solving 0 = −Ak(Thk +1)+ 1. Note
that the return map f dose not depend on a parameter
α. Typical map f are shown in Fig. 4. In this figure,
k-th branch from the right corresponds to a trajectory
with a k turn spiral on the phase space.

Here, we give the proof for chaos generation of this
system. From condition (7), | ∂f

∂xn
| > 1 is satisfied with-

out discontinuous points and f(l) ⊂ l is obvious, hence
f exhibits chaos. In practice, if 1 < A < 4 is satisfied,
the system (6) behaves chaos rigorously. This paper
omits the proof but it is easy in a similar way to [8].

4. Probability density of the inter-spike inter-
vals

First, we derive the relationship function ΔT (y) be-
tween the inter-spike intervals Δτ and the state y(Tn)
at the moment when a spiking occurs. If the trajec-
tory hits the threshold l at τ = Tn, a spiking occurs
and the time interval until next spiking is determined
uniquely by y(Tn). By using return map (8) and linear
algebraic procedure, we obtain the expression for the

13 13
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Figure 4: Relationship function ΔT between y and
ISI. (α = 1, left: A = 1.6(a � 8.55), right: A → 2(a �
5.84)).

function ΔT (y).

Δτ =
ΔT (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

α
(1 + y)(1 +

√
A)2

for 1
A − 1 < yn ≤ 0,

1

α
(1 + y)(1 +

√
A)2(1 +A)

for 1
A2 − 1 < yn ≤ 1

A − 1,
...

1

α
(1 + y)(1 +

√
A)2

k−1∑
j=0

Aj

for 1
Ak − 1 < yn ≤ 1

Ak−1 − 1,
...

(k = 1, 2, 3, · · ·),

(10)

The examples of function ΔT is depicted in Fig. 4.
Second, we consider an invariant measure of the re-

turn map f . In order to derive the invariant measure,
Frobenius-Perron operator P is well known to be use-
ful. For the non-invertible map f(y), its invariant mea-
sure can be obtained as the steady state of the iteration
fk+1(y) = Pfk(y) [9]. Here, we fix the parameter A
to 2 for simplicity. In this case, the invariant measure
INV (y) of return map f must be uniform.

INV (y) = 1, y ∈ [−1, 0] (11)

Finally, using the invariant measure of return map
INV (y) and the relationship function ΔT , we can ob-
tain directly the probability density function of ISI
d(Δτ).

d(Δτ) =

∫ 0

−1

(
∂ΔT (y)

∂y

)−1

δ(y − yT )INV (y)dy, (12)

where yT is the value such as Δτ = ΔT (yT ), namely,

yT = ΔT−1(Δτ), (13)

where ΔT−1 represents a inverse function of ΔT . The
probability density function of ISI d(Δτ) with a pa-
rameter a � 5.84 and α = 1 is as shown in Fig. 5.
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Figure 5: Probability density function of ISI. (α = 1,
A = 2(a � 5.84), left: theoretical, right: numerical.

The right figure of Fig. 5 shows histograms obtained
by 100,000 sampled data of a numerical simulation.

5. Synthesis of a spiking oscillator with a con-
ditional ISI density

In this section, we provide an example of synthesis
approach to realize a spiking oscillator with a desired
probability density of ISI. Here, we show the proce-
dure to realize uniform density of ISI by controlling
the relationship function ΔT .
We consider the α is a time variant parameter such

as

α =

{
αv for Tn ≤ τ < Tn + τα,
1 otherwise,

(14)

where Tn is the n-th switching moments, τα is a suit-
able constant delay-time and

αv = 1− 1

τα

(1 +
√
A)2

1−A
(y(T+

n )− 1). (15)

In this case, the relationship function ΔT changes as
shown in Fig. 6, but the return map f is same to
the case of constant α. From these the function and
the return map, we obtain a uniform density of ISI as
shown in Fig. 7.

6. conclusion

We considered a design problem of a simple spiking
oscillator with a desired inter-spike-interval (ISI) den-
sity. Future subjects are a verification by experimental
systems and an approach for generalisation.
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