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Abstract—In this paper, we consider a design
problem of a simple spiking oscillator with a desired
inter-spike-interval (ISI) density. Our approach to the
problem is based on a mapping procedure. The spiking
oscillator behaves chaotic motions and generates vari-
ous spike trains. It is important to study the relation-
ship between a dynamic property of the oscillator and
a static property on ISI density not only for scientific
investigations, but also for engineering developments.
We provide a simple spiking oscillator with piecewise
constant vector fields. The dynamics of the system is
governed by 1-D piecewise linear return map, there-
fore the rigorous analysis can be performed. We show
an example of spiking oscillators with a conditional IST
density, its synthesis strategy is based on a probability
density function of the 1-D return map.

1. Introduction

Chaotic spiking oscillators (abbr. CSO) have been
studied in interesting works [1]-[3]. CSOs relate con-
siderably to some spiking neuron neuron models [4].
The spiking neuron models have integrate-and-fire op-
eration that generates a instantaneous pulse signal and
reset a state variable instantaneously at the moment
when the various reaches a switching threshold. Re-
peating the operations, CSOs generates a variety of
spiking-trains. Study of the spiking-trains is impor-
tant to develop some researches for information pro-
cessing of the human brain, for pulse based communi-
cation systems and so on[5][6]. Also CSOs are included
in hybrid dynamical systems with various nonlinear
phenomena and its coupled systems can be developed
into efficient applications of neural networks [7]. The
analysis of spiking-trains and the simple circuit imple-
mentation of CSOs are important.

First, this paper presents a statistical analysis of
the inter-spike-intervals (abbr. ISIs) generated from
a CSO with piecewise constant vector field. The cir-
cuit consists mainly of two capacitors, two nonlinear
voltage-controlled current sources and dependent im-
pulsive switches. From the state space description, we
derive the embedded return map which governs the
qualitative behaviour of the system. The statical anal-
ysis of the return map results in the calculation of the

Figure 1: A chaotic spiking oscillator.

invariant density. We derive the invariant density of
the 1-D return map and show that the probability dis-
tribution of the ISIs for the CSO under consideration
can be calculated from the invariant density of the re-
turn map. Second, we shows an example of synthesis
procedure for a spiking oscillator with a conditional
ISI probability density.

2. A chaotic spiking oscillator with piecewise-
constant vector field

Figure 1 shows the circuit model of the simple
chaotic spiking oscillator. The triangle labeled 1 (—1,
respectively) is a linear amplifier with gain 1 (—1, re-
spectively). The triangles labeled 7+ —” are com-
parators. These amplifiers and comparators are real-
ized by an operational amplifier with sufficiently large
input impedance. Trapezoids are differential voltage-
controlled transconductance amplifiers and their out-
put currents are 71 and io, respectively. They are char-
acterised by

i1 =1, -sgn(vy — E),
io = I, - sgn(ve — v1),

<Sgn(w) = { jl for z > 0, ) (1)

for z < 0.
where v, and vy are voltages across the capacitors Cy
and (s, respectively. I, is constant which is controlled
by a bias current of transconductance amplifiers. Con-
necting two capacitors to both output terminals of the
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transconductance amplifiers, we obtain a two dimen-
sional nonlinear system. When S is opened, the circuit
dynamics is described by

T :a-sgn(yf 1); (2)
Y =a-sgn(y — ax),

where 7-” represents the derivative of 7, « is a con-
stant value and the following dimensionless variables

and parameters are used.

Iot x lv 17}

T = ——— = — = —
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where Iy is a virtual constant current for normalizing.
Here, we assume the following parameter condition:

V241
V21

In this parameter range, Equation (2) has unstable
rect-spiral trajectories as shown in Fig. 2. The tra-
jectory on the phase space moves around the singular
point (+,1) divergently and it must reach to the half
line Ipp, = {(z,y)|y = az,y < 0} as shown in the left
figure of Fig. 2.

In this circuit in Fig. 1, M.M. is a monostable multi-
vibrator which outputs pulse signals to close the switch
S and to open S instantaneously. Two comparators
detect the impulsive switching condition. If vy < v1 or
vg > 0, the switch S is opened and S is closed. For the
meantime, the voltage v; and vs is stored to Cy and
Ceo, respectively. If vo > v1 and vy < 0, then M. M.
is triggered by the pair of comparators, and the switch
S is closed and S is opened instantaneously. At that
time, the voltage v; and vy is reset instantaneously to
the inverse voltage —v; and —vs, respectively. that is,

) = Fu,—n0
for va(t) > vy (t) and va(t) < 0,

a >

(4)

where tT = lim._,o{t + &}.

Because the parameter condition (4), the trajec-
tory must reach I, = {(vi,v2)|vs = v1,v2 < 0} when
the switchings occur. Namely, the normalized trajec-
tory must hit l7p, and jumps from (z(73,),y(T},)) to
(—z(T;F), —y(T;})) as shown in the left figure of Fig.
2, where T,, is the n-th switching moments.

Consequently, Eqn. (2) and (5) with the condition
(4) are transformed into

{ i =a-sgn(y—1),

Y= o-sgn(y —az),

o), T = [~2(r), ()" o
for y(r) > a- (1) and y(7) < 0,

V2+1
V2-1

for S = off,

(a >

).

Figure 2: Behavior of Trajectories on the phase space
and a typical chaos attractor. (a ~ 5.84)

Now the system is characterized by only two parame-
ters @ and a.. The right figure of Fig. 2 shows a typical
chaotic attractor with a ~ 5.84.

The transconductances are implemented by OTAs
(LM13700).  Realization procedure of differential
voltage-controlled transconductance amplifiers by us-
ing OTAs can be found in literature [8]. The monos-
table multivibrator, the comparators and the ana-
log switches are implemented by IC package of 4538,
LM339 and LF398, respectively.

3. Embedded return map

The exact piecewise solution of Eqn. (6) for S =off
can be depicted. Here, let us focus on a trajec-
tory starting from origin at 7 = 0 (see Fig. 2).
The trajectory rotates divergently around the singu-
lar point (1,1) and reaches the switching threshold.
A y—coordinate of the reaching point is obtained as
—(2£1)2 + 1. Here we define A = (25)2 > 1 and
I={(z,y)|—1 <y <0,y =az}. And we consider the
case of —A 4+ 1 > —1, that is, the minimum value of
y is grater than —1. In this case, the trajectory start-
ing from [ must jumps instantaneously to the symmet-
ric point of the origin, the trajectory rotates k—times
(k=1,2,3,---) around the singular point and it must
return to [. We henceforth consider the following pa-
rameter range with (4):

1<A<2. (7)

If we choice [ as Poincaré-section, we can de-
fine one dimensional return map f from [ to it-
self. Letting (2(T,),y(T.)) be the starting point,
((Th+1),y(Tht1)) be the return point as shown in
left figure of Fig. 2. And letting any points on [ be
represented by its y-coordinate, f is defined by

Yn+1 = f(yn)7 (8)

where we rewrite y, = y(T},).

fil=1,
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Figure 3: Chaotic return maps. (left: A = 1.8(a ~
6.85), right: A — 2(a ~ 5.84)).

By using piecewise-constant trajectories and linear
algebraic procedure, we obtain an explicit expression
for the function f:

—Ay, +1)+1
for%—1<yn§0,

—A%(y, +1)+1

for%—l<yn§%—l,

f(yn) = :
7Ak(yn+1)+1
forﬁ71<yn§ﬁfla

(k:172737"')a

where each borders of the piecewise maps, Thy = ﬁ —
1, are derived by solving 0 = —A¥(Thy, + 1) + 1. Note
that the return map f dose not depend on a parameter
«a. Typical map f are shown in Fig. 4. In this figure,
k-th branch from the right corresponds to a trajectory
with a k turn spiral on the phase space.

Here, we give the proof for chaos generation of this
system. From condition (7), |%{L| > 1 is satisfied with-
out discontinuous points and f({) C [ is obvious, hence
f exhibits chaos. In practice, if 1 < A < 4 is satisfied,
the system (6) behaves chaos rigorously. This paper

omits the proof but it is easy in a similar way to [8].

4. Probability density of the inter-spike inter-
vals

First, we derive the relationship function AT (y) be-
tween the inter-spike intervals A7 and the state y(75,)
at the moment when a spiking occurs. If the trajec-
tory hits the threshold I at 7 = T,,, a spiking occurs
and the time interval until next spiking is determined
uniquely by y(T;,). By using return map (8) and linear
algebraic procedure, we obtain the expression for the

T 1.
/// ///

Figure 4: Relationship function AT between y and
ISL (e =1, left: A =1.6(a ~ 8.55), right: A — 2(a ~
5.84)).

function AT (y).

1
a(1+y)(1+\/Z)2
for%—1<yn§0,
1
E(1+y)(1+ﬂ)2(1+A)
for%—l<yn§%—l,
AT = :
: 1
AT(y): 1 k—1 (0)
(1 1 AR Y
~(1+y)(1+VA)? )

forﬁfl<yn§A,},171,

(k:172737"')a

The examples of function AT is depicted in Fig. 4.

Second, we consider an invariant measure of the re-
turn map f. In order to derive the invariant measure,
Frobenius-Perron operator P is well known to be use-
ful. For the non-invertible map f(y), its invariant mea-
sure can be obtained as the steady state of the iteration
fe+1(y) = Pfr(y) [9]. Here, we fix the parameter A
to 2 for simplicity. In this case, the invariant measure
INV (y) of return map f must be uniform.

INV(y)=1, ye€[-1,0] (11)

Finally, using the invariant measure of return map
INV (y) and the relationship function AT, we can ob-
tain directly the probability density function of ISI
d(AT).

O (OAT(y)\ !

o) = [ (252 st - iV, (12
-1

where yr is the value such as At = AT (yr), namely,

yr = AT'(A7), (13)

where AT ™! represents a inverse function of AT. The
probability density function of IST d(A7) with a pa-
rameter a ~ 5.84 and o = 1 is as shown in Fig. 5.
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Figure 5: Probability density function of ISI. (a = 1,
A =2(a ~ 5.84), left: theoretical, right: numerical.

The right figure of Fig. 5 shows histograms obtained
by 100,000 sampled data of a numerical simulation.

5. Synthesis of a spiking oscillator with a con-
ditional ISI density

In this section, we provide an example of synthesis
approach to realize a spiking oscillator with a desired
probability density of ISI. Here, we show the proce-
dure to realize uniform density of ISI by controlling
the relationship function AT.

We consider the « is a time variant parameter such

as
| a, for
{

where T, is the n-th switching moments, 7, is a suit-
able constant delay-time and

oo LO+VA?

T 1—A

T, <17<T,+ 7a,

otherwise, (14)

(y(Ty)-1).  (15)
In this case, the relationship function AT changes as
shown in Fig. 6, but the return map f is same to
the case of constant a. From these the function and
the return map, we obtain a uniform density of ISI as
shown in Fig. 7.

6. conclusion

We considered a design problem of a simple spiking
oscillator with a desired inter-spike-interval (ISI) den-
sity. Future subjects are a verification by experimental
systems and an approach for generalisation.
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