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Abstract— This paper investigates dynamical
properties of a continuous-time image reconstruction
(CIR) system for computed tomography. We verify
that an objective function of the inverse regularization
problem decreases in time along the solutions to differ-
ential equations describing the CIR system. Moreover
we illustrate that the system could reconstruct images
with ensuring positive pixel values for simulated pro-
jection data.

1. Introduction

In this paper, we investigate a continuous-time im-
age reconstruction (CIR) system [1, 2] described by
differential equations. We have proposed the system
for reconstructing tomographic medical images [3, 4]
using its implementation in an analog electronic cir-
cuit, whose reconstruction speed is higher than that
of software-based iterative methods [5, 6, 7, 8].

The CIR is a system of continuous dynamical meth-
ods [9, 10, 11, 12, 13, 14] for the regularization of
ill-posed inverse problems [15] in computed tomogra-
phy with noisy projection data. The conventional lin-
ear continuous method [16] produces negative values,
which are physically impossible as a pixel image. The
non-negativity constraint necessitates nonlinear con-
tinuous methods, including our CIR system.

We investigate that an objective function of the in-
verse regularization problem decreases in time along
the solutions to differential equations describing the
CIR system. Moreover we illustrate that the sys-
tem could reconstruct images for simulated projection
data.

2. CIR System

The basic problem of CT is to reconstruct an image
using data acquired from projections [3, 4]. Our task
is to obtain the pixel values x ∈ RJ

+, with R+ denoting
the set of non-negative real numbers, satisfying

y = Ax, (1)

where y ∈ RI
+ \ {0} is the projection value, and A ∈

RI×J
+ \ {0} is a normalized projection operator. For

inconsistent projection data, Eq. (1) is an ill-posed
problem, which means that its solution is not unique
or does not exist [15]. Therefore, instead of solving
Eq. (1), we consider the optimization problem

min
x(t)∈RJ

+

V (x(t)), t ∈ R,

V (x) :=
1
2
‖y − Ax‖2

2. (2)

To obtain a local minimum of the objective function,
one can compute limit sets of evolutions of continu-
ous dynamical systems [9, 10, 11, 13]. We have pro-
posed [1, 2] a continuous dynamical method as an ini-
tial value problem in the following form

dx

dt
= −X

∂V

∂x
(x)

>

= XA> (y − Ax) , (3)
t ∈ R+, x(0) = x0,

where X := diag(x) indicates the diagonal matrix of
order J × J in which the corresponding diagonal ele-
ments are elements of x.

3. Theoretical Result

The gradient system in Eq. (3) is a modification
from the linear continuous system [16]

dx

dt
= −∂V

∂x
(x)

>

= A> (y − Ax) , (4)
t ∈ R+, x(0) = x0,

to enforce the positivity of its solutions. Let φ(t,x0)
be a solution to Eq. (3) with initial value x0, and R++

denote the set of positive real numbers. The nonlinear
system has the property that V (x) decreases along
the solution φ(t, x0) in time through the initial state
x0 ∈ RJ

++ at t = 0, which is supported by the following
proposition.

Proposition 1. Consider Eq. (3) with x0 ∈ RJ
++. If

there exists a locally unique equilibrium x∗ /∈ {0}, then
V (φ(t,x0)) decreases in t ∈ R+.
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Proof. We have V (x) ≥ 0 with equality if x = x∗ /∈
{0}. Its derivative along the solution is given by

dV

dt
(φ(t,x0)) = −Λ(t,x0)

>Φ(t,x0)Λ(t, x0), (5)

where Φ := diag(φ) and Λ := A>(y − Aφ). Because
any solution φ(t,x0) with initial value x0 ∈ RJ

++ is in
RJ

++ for all t ∈ R+, the derivative is negative semidef-
inite for all t ∈ R+ and any x0 ∈ RJ

++.

4. Examples

To illustrate the theoretical result, let us take three
examples.

4.1. Example 1

The first one gives an explicit solution to the scalar
system. The system (3) with I = 1, J = 1, A = a > 0,
and y > 0 can be written as

dx

dt
= ax(y − ax) (6)

which, by using separation of variables, can be rewrit-
ten as

dx

ax(y − ax)
= dt.

Integrating both sides and using partial fractions, we
get ∫

dx

ayx
+

∫
dx

y(y − ax)
=

∫
dt + c,

where c is a constant, and then

1
ay

ln |x| − 1
ay

ln |y − ax| = t + c,

y

x
− a = Ke−ayt, K = ±e−ayc.

So,

x =
y

a + Ke−ayt
.

To find K, let x(0) = x0 > 0. Then we have

K =
y

x0
− a.

Therefore, the solution is

φ(t, x0) =
y

a + ( y
x0

− a)e−ayt
. (7)

We see that φ(t, x0) > 0 for all t ≥ 0.

4.2. Example 2

The second example consists of a known phantom
image as

x′ =


5
7
6
2

 . (8)

This simple example is for illustrating behavior of the
CIR system, and is made of (2 × 2)-pixel image and
six projection rays with the projection operator and
noisy projections, respectively, given by

A =


1 0 1 0
0 1 0 1
1 0 0 1
0 0 1 1
1 1 0 0
0 1 1 0

 and y =


14.6891
5.7118
5.4928
5.3800

14.2761
10.4708

 . (9)

Using the least square method, a solution of this exam-
ple such that the value of V (x) becomes the minimum
without constraints is calculated as

x∗ = (A>A)−1A>y =


7.8922
5.8926
5.9332

−1.0445

 . (10)

It includes a negative value that is physically impossi-
ble as a pixel value. We simulated transitions of a so-
lution x(t) = (x1(t), x2(t), x3(t), x4(t))> starting from
the initial state xj(0) = 10, j = 1, . . . , 4, in the CIR
system described by Eq. (3), as shown in Fig. 1. It
was demonstrated that the CIR system does not pro-
duce unphysically reconstructed images with a nega-
tive pixel value.
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Figure 1: Trajectories for the second example
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Figure 2: (a) phantom, (b) sinogram, and (c) projec-
tions with and without noise

D = 25.050

Figure 3: Image reconstructed using filtered back-
projection

4.3. Example 3

The third example is to deal with an ill-posed im-
age reconstruction problem, assuming the true image
with 65 × 65 pixels (J = 4225) and 1728 projection
rays (I = 1728), which were derived from 96 detec-
tors per projection and 18 projections over 180◦ scan.
The projection data include additive noise generated
randomly from a normal distribution. Figures 2 (a),
(b) and (c) show the Shepp-Logan phantom image x′,
the sinogram image from the noisy projection y, and
the elements of y and the noise-free projection Ax′,
respectively. An image obtained from filtered back-

projection (FBP) with a Hanning filter is shown in
Fig. 3. The range of the reconstructed pixel values is
[−0.20, 0.78], including negative values. Note that D
denotes the distance defined by the Euclidean norm
between a reconstructed image and the phantom im-
age. Figure 4 shows snapshots of reconstructed images
using the linear continuous system in Eq. (4), where
D is defined as above. We observe there are artifacts
in images obtained from both FBP and the linear con-
tinuous methods. While, snapshots of images recon-
structed by using the CIR system are illustrated in
Fig. 5, where D is defined as above. We obtained
reconstructed images gradually deblurred as time pro-
ceeds. According to the values of D, the image quality
is better than that of other methods.

5. Conclusion

We theoretically verified that the solutions of the
CIR system converge to an equilibrium that corre-
sponds to a local minimum of the ill-posed inverse
problem. Moreover, we illustrated that the CIR could
reconstruct images keeping the non-negativity con-
straints of pixel values for noisy projection data.
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Figure 4: Snapshots of reconstructed images using the linear continuous system
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Figure 5: Snapshots of reconstructed images using CIR system
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