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Abstract—There has been much recent interest in con-
tructing networks from time series data, partly because do-
ing so makes available a vast new suite of tools for non-
linear time series analysis. In this paper we introduce an
alternative approach by which these techniques can be em-
ployed when the underlying time series is a discrete sym-
bolic sequence with a small finite alphabet — obvious con-
nections to Markov chains and nonlinear time series mod-
elling will be discussed. A trivial extension to this method
also means that it can be applied to continuous-valued
scalar time series as well.

1. Introduction

Since the work of Zhang and Small [9, 10] there has been
an increasing interest in representing time series data as a
complex network. Currently, there are three popular ap-
proaches: the visibility graph method [2], the phase space
network [8] and the recurrence network [4]. The basic
premise of all of these methods is to somehow construct
a transformation which represents a time series as a com-
plex network. The hope is that, as a consequence of a
clever construction, the properties of the complex network
are somehow related to the dynamics of the underlying sys-
tem,

The difference between each of these methods is in how
they achieve the same basic objective. Recurrence and
phase space networks represent each individual state (ob-
served at some instance in time) as a node and add links be-
tween sufficiently similar (close in phase space) states. This
approach is closest to the original cycle network method
proposed in [10]: in that paper, each cycle of a time series
is a node and links are drawn between similar nodes. All of
these methods rely on the principle of proximity: dynam-
ical states are mapped to nodes, and links drawn between
nodes corresponding to states which are sufficiently close.

The weakness of these proximity methods is that they do
not directly encode the dynamical behaviour of the original
system. Of course, the adjacency matrix of the correspond-
ing complex networks do resemble recurrence matrices [3]
— particularly for the so-called recurrence networks. How-
ever, the temporal ordering of rows and columns of a net-
work’s adjacency matrix are ignored by all network based
measures. Since proximity-based methods rely on recon-
structing the dynamical system state from a (usually) scalar
time series, it is possible to encode dynamical information
through an appropriate over-embedding of the system state:
by using an embedding dimension d � de where de is

the “correct” dimension required for reconstruction, ad-
ditional information could be included in each state. These
excessively large embedding dimensions mean that each
state is essentially a strand from a trajectory of the origi-
nal system. However, both recurrence networks and phase
space networks are constructed under the assumption of
a“proper” embedding. Hence, these methods can, in princi-
ple at least, be considered as constructing networks which
represent primarily the topological properties of the attrac-
tor underlying the original dynamical system

Conversely, the visibility graph method does directly en-
code dynamical information. Each scalar observable is
mapped to a node and links drawn between successive
nodes based on a convexity (and implicitly self-simillar)
criterion. The visibility graph method, by construction is
well suited to stochastic processes, however it is less clear
that it is equally applicable to arbitrary dynamical systems.

In this paper we focus on an alternative type of network
construction algorithm which will also lead to a dynami-
cal network. The methods has been applied (intermittently,
and in particular contexts) in the past (see, for example,
several examples listed in the review [1]). However, here
we pursue a more systematic study of this method for two
reasons: (1) as a method to deal with symbolic timeseries,
and (2) as a way to explicitly study dynamical properties of
the original system — rather than topological properties of
the attractor.

2. State transition networks

Let st be a discrete symbolic sequence where st ∈ A

a finite alphabet. Alternatively, one may start with xt a
scalar time series and first quantise xt into b equally proba-
ble bins A = {[X(0), X(1)], [X(1), X(2)] . . . [X(b−1), X(b)]} such
that Prob(xt ∈ [X(i−1), X(i)] = 1

b for i = 1, . . . b. Choose
an embedding dimension d (as usual, we assume that some
convenient prescription can be found to obtain an appropri-
ate dimension [5]) and construct the embedded quantised
state zt = (st, st−1, . . . , st−d+1).

We note that

zt ∈ A ×A × . . . ×A︸                ︷︷                ︸
d times

and therefore, in the case of an underlying scalar time se-
ries, zt is defined by the particular d dimensional hypercube
of intervals

[X(`1−1), X(`1)] × [X(`2−1), X(`2)] × . . . × [X(`d−1), X(`d)]
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Ikeda map (b=3 and d=7)
Ikeda map (b=6 and d=20)

Rossler system (b=3 and d=7)

Rossler system (b=6 and d=20)

Figure 1: Networks for the chaotic Ikeda map (upper) and the chaotic Rössler system (lower) are depicted. These networks
are constructed with quantisation b and embedding d. On the left are networks with a relative coarse quantisation (b = 3
and d = 7) and on the right a much finer representation (b = 6 and d = 20). In both cases, the length of the original time
series N = 3162.

where `i ∈ {1, 2, . . . d} for i = 1, 2, . . . d. Hence, a discrete
embedded state zt is equivalent to a d-tuple of symbols from
an alphabet of b symbols, and also a d-dimensional hyper-
cube.

Finally, to construct a network we let each discrete state
zt correspond to a node n(t). Two nodes n(i) and n( j) are
linked if there exists t such that zt = zi and zt+d = z j. By
definition the link from n(i) to n( j) is directed (although the
measures we employ in this preliminary report do not de-
pend on that directedness). The time shift d between zt and
zt+d is included to ensure that the two nodes n(i) and n( j)
linked only through completely independent states. This
ensures d degrees of freedom among the potential neigh-
bours of n(i) and a (potentially) fully populated adjacency
matrix. Conversely, if we had chosen to link n(i) and n( j)
on the basis of zt and zt+1 for some t, then there would only
be a maximum of b possible links, since d−1 of the states of
zt+1 are determined by zt. Note also that the size of the net-
work does not depend directly on the length of the time se-
ries N (although it does depend on some combination of N,

ergodicity and largest Lyapunov exponent), but it depends
rather on the alphabet size b and the embedding dimension
d: the network size is bounded above by bd. Illustrative
networks are shown in Fig. 1 and will be discussed in the
next section.

Clearly, this network is now measuring something quite
different from the proximity based methods: connectiv-
ity between nodes indicates dynamical causality between
coarse grained states in the underlying system. Hence, both
coverage of phase space (and hence allowable states) and
dynamical behaviour will directly influence the behaviour
of these networks. That is, in the case where st is ob-
tained by quantising a scalar time series xt, this method
will measure the intersection between the attractor and
coarse grained hyper-cubes: a rudimentary proxy for the
correlation integral. For the case where we are only con-
cerned with the discrete symbolic sequence, this method
constructs a network which encapsulates a Markov chain
model of the underlying dynamics.
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Figure 2: Assortativity and clustering coefficient computed
for an array of networks. The upper panel clearly shows
we are able to distinguish between iid numbers (circles),
linear noise (squares), chaotic maps (asterisks) and chaotic
flows (stars) — independent of the length of the signal. The
lower panel shows that with increasingly fine quantisation
and over-embedding, stochastic systems behave identically
(for a fixed length of time series). The clustering coefficient
computed here uses a weighted network and therefore is not
normalised to a fractional value.

3. Examples

Figure 1 clearly illustrates that the results of this method
depend on the choice of parameters d and b. In this figure
we only show results for two chaotic systems (which have
hence been quantised): the Ikeda map and Rössler chaos.
Results for other chaotic systems (not shown here) are sim-
ilar. For stochastic processes the networks tend to consist
of either long isolated strands (since the random system ex-
hibit entirely unique paths which, in a sufficiently high em-
bedding dimension never self-intersect by chance) or a ran-
dom network (when the sequence of visitation to quantised
states is also essentially random). Which of these extremes

manifests for random data depends only on the parameters
b and d.

With a finer granularity and over-embedding (b = 6 and
d = 20, on the right in Fig. 1) the individual deterministic
trajectories become evident — the rate at which splittings
in these paths occur is related to the degree of mixing in
the underlying system and hence (presumably) the largest
Lyapunov exponent. For a coarser quantisation and lower
embedding dimension the system transitions between a fi-
nite set of discrete possible states —- this is particularly ev-
ident for the Rössler system (with b = 3 and d = 7) as the
corresponding network is highly structured and symmetric
(and this is even more evident for the cases b = 2, which
are not shown here). A consequence of this fine grained
quantisation is that only populated states in phase space
will generate corresponding nodes. The network one ob-
tains is therefore a function of the distribution of points in
phase space and hence depends on the correlation integral
at the corresponding granularity.

In Fig. 2 we show that by simply measuring the net-
work assortativity and clustering coefficient we are able to
distinguish between different types of dynamical systems
— even for relative short time series. In Fig. 2 networks
are constructed from time series of length N = 568 (red,
colour online), N = 1000 (green), N = 1778 (blue) and
N = 3162 (black). The different systems are chaotic maps
(Ikeda and logistic maps, shown as asterisks), chaotic flows
(Lorenz and Rössler systems, shown as stars) and random
signals (independent and identically distributed or iid noise
and linear noise, shown as circles and squares, respec-
tively). The upper panel is with a relatively coarse em-
bedding (b = 3 and d = 7), the lower panel is for a finer
representation (b = 6 and d = 20).

Clearly, the coarse embedding is sufficient to distinguish
chaos from noise — even for relatively short time series
(N = 568). The reason is clear from Fig. 1. The net-
work constructed with this method encapsulated both the
structured distribution of states in phase space and the de-
terministic sequence in which these states occur. It turns
out that a simple combination of clustering coefficient and
assortativity is sufficient to measure this. In contrast, for
a finer quantisation and over embedding, the network one
obtains from a random signal will always be the same (for
a fixed N) — a random sequence of states distributed ran-
domly in state space. Hence, in the lower panel of Fig. 2
we see that the results for the iid and linear noise source
exactly coincide (for a fixed N).

In Fig. 3 we briefly explore the effect of time series
length N on the median path length of the corresponding
network. While, as N increases the network will not get
smaller (in terms of number of nodes), it does not neces-
sarily continue to increase in size — particularly when N
is sufficiently large to explore all the permitted distinct dis-
crete states. Hence, in Fig. 3 we observe a plateau, where
as N increases the network size does not increase, but rather
the average degree may increase (up to some bound for de-
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Figure 3: Network diameter as a function of N for chaotic
systems. Results for chaotic flows (solid lines) and chaotic
maps (dash-dotted) show the average path length is not
only not increasing, but decreases to a plateau as a func-
tion of N. Note that N is the length of the time series —
not the size of the network.

terministic systems) and hence the average path length con-
tinues to drop. Of course, for random systems — where
increasing N will allow additional quantised states to be
visited — this will not be the case.

4. Conclusions

There have been several methods proposed to transform
time series into complex networks, and this paper discusses
one more. While the method we discuss here is not neces-
sarily original (it has been described implicitly or more-or
-less explicitly in several particular contexts), it is impor-
tant to realise that this approach is in direct contrast to the
proximity based methods that are enjoying current popu-
larity. By using a temporal based method, we are able to
construct networks for which there is a clear connection to
the underlying dynamics — and to the quantities which one
usually estimates for nonlinear time series. By exploiting
this connection we are able to construct networks which a
sensitive characterisation of the features of the underlying
dynamical system.

Clearly, we are not arguing that the currently popular
proximity methods are inferior to dynamical networks such
as those presented here. Only that both styles of networks
should be considered. In particular, one area for application
of these dynamical networks is in the construction of surro-
gates. Just as has been done with Twin Surrogates [7] (and
the references therein) and pseudo-periodic surrogates [6]:
the dynamics are encoded in the networks described here.
Be replaying the network evolution, one can construct al-
ternative realisations of the same system. Hence, with this

method it is possible to use the network as a archetypal de-
scription of the dynamical system underlying the data: the
network acts as a model from which distinct realisations of
the same dynamics may be obtained.
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