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Abstract—The Inverse function Delayed (ID) model
was proposed as one of novel neural models. The ID
model has an ability of oscillation, and this model can solve
some local minimum problem in combinatorial optimiza-
tion problems. However, it needs large calculation cost,
and it is difficult to apply for large size combinational op-
timization problems. This problem was solved by Inverse
function Delay-Less (IDL) model in combinational opti-
mization problems. But learning process of IDL model has
not been discussed yet. This study is to build a hierarchical
network by using IDL model, and to derive a back prop-
agation learning with IDL model. Finally, we discuss the
performance of back propagation learning based on an IDL
model.

1. Introduction

Recent computer’s weak point is biological information
processing, such as learning, pattern recognition, etc. Neu-
ral networks are expected to apply to those processing[1].
The neuronal models to constitute neural network are di-
vided into two models. One is the macro type model. It
has a purpose that investigates dynamics of a network. An-
other is micro type model. It has a purpose that investigates
neuronal movement of the biology. However, an Inverse
function Delayed (ID) model[2] has those two features. ID
model has time delay between its internal state and output.
By setting a negative slope to inverse output function, it can
generate negative resistance field.

In solving combinational optimization problem using
neural network, Hopfield models have local minimum
problems. However, the ID model can avoid local mini-
mum problems. Because it can set the negative resistance
effect to a local minimum. So a solution exploration can
escape from local minima[3][4][5].

On the other hand, the most typical process of the neu-
ral network is learning. In supervised learning, there are
local minimum problems like combinatorial optimization
problems. A preliminary research attempted to introduce a
negative resistance effect to this learning process, and the
new learning method which had a negative resistance ef-
fect was proposed[6][7]. It build, a hierarchical network
using ID model, and it was trained through back propaga-

tion learning . The BP learning using ID model has better
performance than normal BP learnings.

However, the learning using the ID model has a problem
having a larger calculation cost rather than normal learn-
ings. Because it has two different size time constants, ID
model time constant and learning time constant. It is dif-
ficult to apply for a large size learning. Solving combina-
tional optimization problem using ID model had the same
problem.

This calculation cost problem was solved by Inverse
function Delay-Less (IDL) model in combinational opti-
mization problems[8]. IDL model improved calculation
speed rather than ID model. This model has only one time
constant. And it has the same ability as ID model.

IDL is a new model. So, learning performance of IDL
model has not been discussed yet. This study is to build
a hierarchical network using by IDL model, and we derive
back propagation learning with IDL model. Finally, we
compare IDL model with conventional back propagation
model.

2. Inverse function Delayed (ID) model

This section explains about the ID model[2]. The model
introduces biological time delay for output of Hopfield
model[1]. The ID model is described as Eq. (1) and Eq.
(2). ui denotes internal state. wi j denotes connection weight
from neuron j to neuron i. The self connection weight de-
notes W. xi denotes output of neuron i. τu and τx are time
constant of internal state and output respectiuely. f (ui) is
a output sigmoid function. g(xi) is an inverse function of
f (ui). Eq. (2) decides the output of neuron. The condition
of time constant is (τu >> τx).

τu
du
dt

=
∑

j

wi jx j +Wxi + hi − ui (1)

τx
dxi

dt
= ui − g(xi) (2)

Next, we explain about negative resistance effect of the
ID model. Negative resistance affects network dynamics.
The Eq. (1) is inserted to Eq. (2), we obtain Eq. (3) and
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Eq. (4). The Eq. (3) will consider as movement of a par-
ticle in potential energy structure. d2xi/dt2 denotes inertia,
dxi/dt denotes viscous resistance, and the right side of the
equation denotes the force exerted by potential. Eq. (4)
shows the coefficient functions of viscous resistance η(xi).
This region of η(xi) < 0 represents the negative resistance.
By setting N shape as g(x), we can get negative resistance
effect.

τx
d2xi

dt
+η(xi)

dxi

dt
= − 1
τu

(g(xi)−Wxi −
∑

j

wi jx j −hi) (3)

η(xi) =
dg(xi)

dxi
+
τx

τu
(4)

3. Inverse function Delay-less (IDL)model

In this paper, we use Eq. (6) as the neuron model[8].
The IDL model removes time delay of an ID model. By
erasing time construct τx of Eq. (3), we can get the IDL
model. We can consider Eq. (5) as the movement of a par-
ticle without inertia. g(xi) restricts the output range x from
0 to 1. g(xi)′ controls the particle velocity. Therefor, by
algorithmic limiting of output g(xi)′ may be changed to un-
related function with g(xi). This setting doesn’t influence
to potential. The velocity amplitude function is changed
to Ax(xi). The shape of Ax(xi) is similar to the differen-
tial form of the sigmoid function. It does not change the
essence of the neuron model. By introducing the velocity
amplitude function and a higher amplitude setting inside
output space, IDL model can get like as negative resistance
effect of ID model.

dxi

dt
= − 1
τug′(xi)

(g(xi) −Wxi −
∑

j

wi jx j − hi) (5)

∆xi = −
A(xi)
τu

(g(xi) −Wxi −
∑

j

wi jx j − hi) (6)

Ax(xi) =
αx

1 + exp βx(0.5 − Lx − xi)

− αx

1 + exp βx(0.5 + Lx − xi)
(7)

4. Backpropagation learning using IDL model

This section explains about the method of backpropaga-
tion with IDL model. First, we explain about hierarchal
network using IDL model. Next, we derive equations for
IDL backpropagation learning.

4.1. Hierarchal network using IDL

The input layer structure normal neuron, and input signal
passes through the input layer to a hidden layer. The hidden
layer and an output layer take IDL models. Each layer is
denoted by l. The behavior of IDL model from layer l−1 to

layer l is written in Eq. (8) .IDL model has time construct
τu. The neurons in the same layer are denoted by subindex
numbers i, n[l] showed the number of layer neuron. The
input signal to layer l is x[l−1]

j , and connection weight is

w[l]
i j , u[l]

i showed internal state of IDL neuron i. h[l]
i is bias.

∆x[l]
i = Ax(x[l]

i )(
n[l−1]∑
j=1

w[l]
i j x[l−1]

j +Wx[l]
i + h[l]

i − g(x[l]
i )) (8)

In this research, we define the velocity amplitude (VA)
function of the IDL neuron as X VA function, and the VA
function of the IDL back propagation as W VA function.
W VA function is explained at next subsection.

4.2. Backpropagation using IDL model

Next, we derive BP learning using IDL model. In this
research, for simplicity, we set only neuron for the output
layer. It is necessary to set error function to update connec-
tion weight. We provide P patterns as training data, input
~x[1](p) and output teacher signal T (p). Eq. (9) shows the

error function. It is square error between output and teacher
signal. The connection weight w1i is updated according to
Eq. (10).

E =
1
2

P∑
p=1

(T (p) − x[3]
1 (p))2 (9)

∆w[3]
1i = −ε

P∑
p=1

∂E

∂w[3]
1i (p)

(10)

A method of BP learning at consecutive time is
suggested[9]. Using time constant τw, Eq. (10) is changed
to consecutive time, it becomes Eq. (11).

τw
dw[3]

1i

dt
= −

p∑
p=1

∂E(p)

∂w[3]
1i

(11)

= −
P∑

p=1

∂E

∂x[3]
1 (p)

∂x[3]
1 (p)

∂θ[2]
1 (p)

∂θ[2]
1 (p)

∂w[3]
1i (p)

(12)

Eq. (11) is expanded using chain rule of differentiation,
it becomes Eq. (12). Let us introduce a connection-weight
time-constant τw (τw >> ∆). To consider time constant τw,
Eq. (8) resemble following Eq. (13).And Eq. (13) becomes
Eq. (14). Because τw is very much larger than time con-
stant ∆, so ∆x[l]

i is approximately 0 in learning period. The
sum input signal from previous layer is θi in Eq. (15).

0 = Ax(x[l]
i )(θ[l−1]

i +Wx[l]
i + h[l]

i − g(x[l]
i )) (13)

g(x[l]
i ) = Wx[l]

i + θ
[l−1]
i + h[l]

i (14)

θ[l−1]
i =

n[l−1]∑
j=1

w[l]
i j x[l−1]

j (15)

In IDL model using inverse output function g,
∂x[3]

1 (p)/∂θ[2]
1 is changed to Eq. (16). We put
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g(x[3]
1 (p))′ = 1/Aw(x[3]

1 (p)) as IDL model. A(x[l]
i ) is

described in Eq. (17). Each equation of the error function
Eq. (9) and the sum of input signal Eq. (15) are insert to
Eq. (12), it becomes Eq. (18).

∂x[3]
1 (p)

∂θ[2]
1

=
1
∂θ[2]

1

∂x[3]
1 (p)

=
1

g(x[3]
1 (p))′ −W

=
1

1/Aw(x[3]
1 (p)) −W

(16)

Aw(xi) =
αw

1 + exp βw(0.5 − Lw − xi)

− αw

1 + exp βw(0.5 + Lw − xi)
(17)

τw
dw[3]

1i

dt
=

P∑
p=1

1

1/Aw(x[3]
1 (p)) −W

(
T (p) − x[3]

1 (p)
)

x[2]
i (p) (18)

The connection weights are updated by online learning at
each training data. Eq. (18) becomes Eq. (19).

τw
dw[3]

1i

dt
=

1

1/Aw(x[3]
1 (p)) −W

(
T (p) − x[3]

1 (p)
)

x[2]
i (p) (19)

The equation of connection weight for update between out-
put later and hidden layer using IDL model is Eq. (19).

Next, we describe about the connection weight update
equation between input neuron i and hidden layer neuron
j under the condition of one output neuron for input pat-
tern P. The error function differentiate using connection
weight wi j like Eq. (11), it changes to Eq. (20). Eq. (20) is
the equation for update connection weight. Eq. (20) is ex-
panded using chain rule of differentiation, it becomes Eq.
(21). By erasing partial differentiation of Eq. (21), it be-
comes Eq. (22). Eq. (22) shows update equation of con-
nection weight between input layer and hidden layer.

τw

dw[2]
i j

dt
= −∂E(p)

∂w[2]
i j

(20)

= − ∂E

∂x[3]
1 (p)

∂x[3]
1 (p)

∂θ[2]
1 (p)

∂θ[2]
1 (p)

∂x[2]
j (p)

∂x[2]
j (p)

∂θ[1]
i (p)

∂θ[1]
i (p)

w[3]
1i (p)

(21)

τw

dw[2]
i j

dt
=

1

1/Aw(x[2]
i (p)) −W

1

1/Aw(x[3]
1 (p)) −W(

T (p) − x[3]
1 (p)

)
x[1]

j (p)w[3]
1i (22)

In this research, the VA function of the IDL back propaga-
tion is referred to W VA function. The shape of each W VA
function is the same.

5. Research of Learning ability

We inspected whether the BP learning of the IDL model
can learn through XOR problem simulation. At first, we
show a simulation condition. Next we describe a simula-
tion results.

5.1. The Simulation condition

We investigate the learning ability through convergence
rate of XOR problem. We use 3 layers network. The struc-
ture of network is [input, hidden, output]=[2,3,1]. The time
constant and time notching are τw = 1.0, τx = δt = 0.01,
respectively learns until 1 × τw. Inverse output function is
shown Eq. (23). We put C = 2.0 for inverse output func-
tion. The self connection weight is W = 0. Training pattern
is given at random. If the error function became, E < 0.01,
it was assumed that the learning would be converged at the
right answer. The time over of BP learning set 5 × 105τw.

g(xi) = f −1(xi) =
1
C

log
xi

1 − xi
(23)

We argue about the effect of the X and W VA function. So,
we simulate using following condition.

• Condition 1: W VA function is constant, we change
only X VA function.

• Condition 2: X VA function is constant, we change
only W VA function.

• Condition 3: We change both of X and W VA function
at the same time

We set βx = βw = 10.0 for the inclination of VA function.
The Uniformity of VA function, α = 10.0, L = 0.01. The
simulation results are as follow; Across axle is width L of
VA function A(xi). The vertical axis is the mean conver-
gence probability for 100 times trial of XOR problem. In
the same condition, we tried normal BP learning for XOR
problem. The result of average convergence rate is 92%.

5.2. Result for change of X VA function

The figure1 shows the average convergence probability
changing X VA function. Compared with normal BP, con-
vergence probability improves in some area. Convergence
probability was reduced for a wide Lx. Because the out-
put of IDL model becomes 0 or 1 by wide VA-function.
Therefor BP learning be stagnant.

5.3. Result for change of only W VA function

The figure2 shows convergence rate as a function of L in
W VA function. Compare with normal BP, each parameter
has high convergence rate. Because W VA function has a
function corresponding to the learning rate of BP. Conver-
gence is faster because the connection weight to be updated
at a time is increased.
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Figure 1: Convergence rate with X VA function
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Figure 2: Convergence rate with W VA function

5.4. Result for change of both X and W VA function

The Figure3 shows the result of both X and W VA func-
tion. By simultaneously changing the acceleration function
of the two, convergence rate is better than the condition
2 on some parameters. By widening the width of the VA
function, convergence rate becomes to 0 like condition 1.

6. Conclution

In this research, we considered the IDL model BP learn-
ing. First, we constructed hierarchical network using the
IDL model. Next, we derived the BP learning using the
IDL model. Through the computer simulation, IDL model
can learn XOR problem. Setting W VA function of IDL
model has higher convergent performance than normal BP
learning. In future, we will research about detail effect of
W VA function.

 0

 20

 40

 60

 80

 100

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

A
ve

ra
ge

 C
on

ve
rg

en
ce

 R
at

e 
[%

]

L of A(x)

α=10
     20
     40
     80

Figure 3: Convergence rate with X and W VA function

References

[1] Hopfield J.J. Tank,D.W.”Neural com-
putational of decisions in optimization
problems”,Biol.Cybern.vol.52,pp.141-152,1985.

[2] Akari Sato,Yoshihiro HAYAKAWA,Koji NAKA-
JIMA,”Avidance of the Permanent Oscillation Statee
in the Inverse function Delayed Nerual Network”

[3] Akari SATO, Yoshihiro HAYAKAWA, Koji NAKA-
JIMA,”The Parameter Dependence of the Inverse
Function Delayed Model on the Success Rate of Com-
binatorial Optimization Problems”,J89-A(11), 960-
972, 2006-11-01(Japanese)

[4] Yoshihiro HAYAKAWA, Koji NAKAJIMA, ”The
Method to solve Optimization Problems on a Neural
Network using Inverse Delayed Model”, NC2001-187,
pp.151-158, 2002.(Japanese)

[5] Yoshihiro HAYAKAWA, Jun FUKUHARA,Tatsuaki
DENDA, Koji NAKAJIMA”The Property of In-
verse Delayed Model”, NC2003-4, pp.19-24,
2003.(Japanese)

[6] Jun FUKUHARA, Yoshihiro HAYAKAWA,
Koji NAKAJIMA. ,”BackPropagation with ID
Model”,NLP2003-92(2003-10)(Japanese)

[7] Jun FUKUHARA, Yoshihiro HAYAKAWA, Koji
NAKAJIMA, ”Learning capability of the ID neural
network”,NLP2004-4(2004-5)(Japanese)

[8] Yuto WATANABE, Yoshihiro HAYAKAWA, Shigeo
SATO, Koji NAKAJIMA. ”Inverse Function Delay-
less” (IDL) Model ,2012-12-NLP (Japanese)

[9] Owens, A.J. ,E.I. du Pont de Nemours Co. Inc., Wilm-
ington, DE, USA, Filkin, D.L.”Efficient training of
the back propagation network by solving a system of
stiff ordinary differential equations” Neural Networks,
1989. IJCNN.

- 515 -


