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Abstract—This paper studies characteristics of inter-
spike intervals of simple chaotic spiking neurons having
piecewise constant vector field. The circuit repeats vibrate-
and-fire dynamics and can output various spike-trains. Us-
ing the piecewise exact solution, we can derive the return
map and can analyze the dynamics precisely. Using the his-
togram and recurrence plot of the spike-trains, we classify
the characteristics for some key parameters.

1. Introduction

Integrate-and-fire model (IFM) is a simple spiking neu-
ron model. The IFM repeats integrate-and-fire dynamics
and can output various spike-trains. The IFM can exhibit
synchronous and bifurcation phenomena [1]-[4]. The spik-
ing neuron can be a building-block of pulse-coupled neural
networks having rich applications including image process-
ing [5]-[8]. Analysis of spiking neuron models is important
to develop bifurcation theory and engineering applications.
This paper studies the resonate-and-fire circuit (RFC): our
original spiking neuron model having piecewise constant
characteristics [4]. Below the threshold, the state variable
vibrates divergently around the origin and draws a rect-
spiral. If the state variable reaches the threshold, it is reset
to the base and the circuit outputs a spike. Repeating the
vibrate-and-fire dynamics, the circuit can output various
spike-trains. Using the piecewise exact solution, we can
derive the return map that enables us to analyze chaos and
rich bifurcation phenomena precisely [4]. In this paper, we
especially consider the characteristics of spike-trains using
three method: histogram of inter-spike-interval (ISI), re-
currence plot of the return map orbit (RP1) and RP of the
ISI sequence (RP2). The RP is a visualization method of
the time series signals [9][10]. Applying them to typical
chaotic spike-trains, we can suggest the following:

(1) Using the histogram, we have classified the ISI char-
acteristics into some groups based on wide-band spectrum,
line spectrum and their mixture.

(2) Using the RP1 and RP2, we have classified the com-
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Figure 1: Resonate-and-Fire Circuit

plex spike-trains and simple spike-trains.
(3) If the burst spike-trains are dominant, the image of

the RP1 is different from that of RP2, otherwise the RP1
and RP2 can provide similar images.

2. Resonate-and-Fire Circuit

Fig. 1 shows the RFC. Below the threshold VT , the dy-
namics is described by

C1
d
dt

v1 = I2sgn(v1 + v2)

C2
d
dt

v2 = I1sgn(−v1)

for v1(t) < VT (1)

sgn(x) =
{

1 for x > 0
−1 for x < 0 (2)

As shown in Fig. 2, if v1 reaches VT , the switch S is closed
and v1 is reset to the base Ea instantaneously holding v2 =

constant.
[
v1(t+), v2(t+)

]T
= [Ea , v2(t)]T for v1(t) = VT (3)

Using the dimensionless variables and parameters

x =
v1

aVT
, y =

v2

VT
, τ =

I1t
C2VT

, a =
C2I2

C1I1
, q =

Ea

VT
(4)

Eqs. (1) and (3) are transformed into

d
dτ

x = sgn(y + ax)

d
dτ

y = sgn(−x)

for x(τ) < 1 (5)

[
x(τ+), y(τ+)

]T
=
[
q, y(τ)

]T for x(τ) = 1 (6)
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Figure 2: Dynamics of the resonate-and-fire neuron
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This system has piecewise constant vector field and char-
acterized by two parameters: damping a and base q. Fig.
2 illustrates a typical waveform. x vibrates divergently be-
low the threshold x = 1. If x reaches threshold x = 1, x
is reset to the base q. Repeating vibrate-and-fire dynamics,
the RFC outputs the spike-trains.
Let τn be the n-th spiking position and let Δτn = τn − τn−1

be the n-th ISI. Fig. 3 shows typical trajectories. As pa-
rameters vary, the RFC can exhibit various spike-trains and
typical examples of the ISI histograms are shown in Fig.
4. In Fig. 4(a), the histogram has wide band spectrum. In
Fig. 4(b) and (c), the histogram has narrow band spectrum.
In Fig. 4(d), the histogram consists of line and continu-
ous spectrums. The RFC can output various spike-trains,
however, the histogram-based analysis is not sufficient to
classify the ISI characteristic. Hence, we consider the ISI
by both histogram and RP in Sec. 4.
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Figure 3: Typical attractor for a = 0.2 ( (a) chaos for q = 0,
(b) island for q = 0.48, (c) island for q = 0.65, (d) chaos
for q = 0.8)
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Figure 4: Histogram of the ISI corresponding to Fig. 3
(total number of spikes = 10000, |bin| = 0.1, a = 0.2 (a)
q = 0, (b) q = 0.48, (c) q = 0.65, (d) q = 0.8)

3. Return Map

Here, we derive the return map. Fig. 5 shows the key
objects. Let Lq = {(x, y)|x = q} be the domain of the return
map. We consider the trajectory started from point y0 on
Lq. If x reaches the threshold x = 1, x jumps the base q.
Then trajectory returns to Lq and let y1 be the return point.
Since y1 is determined by y0, we can define the return map
f from Lq to itself:

yn+1 = f (yn) (7)

Fig. 6 shows typical return maps corresponding to Fig. 3.
In the figure, invariant interval I is shown: an orbit eventu-
ally enters into I. In Fig. 6(a), the map has infinite branches
in I and exhibits complex chaotic behavior. In Fig. 6(b),
the invariant interval I exists near the fixed point. As q in-
creases, the graph moves upward and size of I increases.
In Fig. 6(c), we have confirmed that the chaotic orbit can
move in the thin period-2 islands.
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Figure 5: Definition of the return map
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Figure 6: Return map for a = 0.2 ((a) chaos for q = 0, (b)
island for q = 0.48, (c) island for q = 0.65, (d) chaos for
q = 0.8)

- 550 -



4. Recurrence Plot

The RP is known as an analyzing method of chaotic dy-
namics. This method transforms the time series data to
two-dimensional graphics. Using the RP, we can visualize
time correlation, periodic and chaotic behavior, stationarity
and nonstationarity. Using the RP, we consider the classifi-
cation of the spike-trains of the RFC.
Let us consider the RP for time series data v(t) (t =
1, 2, · · · , N). Let S be a two-dimensional plane of N × N.
Calculate the distance D(i, j) between i-th data v(i) and j-th
data v( j):

D(i, j) = |v(i) − v( j)| (8)

If D(i, j) < θ, we plot the (i, j) cell of S , where θ
is threshold. Repeating this process for all D(i, j) (i =
1, 2, · · · , N; j = 1, 2, · · · , N), we can make the RP.
We construct the RP for two kinds of data: re-
turn map orbits {y0, y1, · · · , yN−1} and ISI sequence
{Δτ1, Δτ2, · · · , ΔτN}. Let Dy and DIS I be the distance
calculated for the y data and the ISI data, respectively. Let
θy and θIS I be the threshold for RP of the y data and the
ISI data, respectively. We plot the (i, j) picture cell, as the
following:

For y data

Dy(i, j) = |yi − yj | < θy (9)

For ISI data

DIS I(i, j) = |Δτi − Δτ j| < θIS I (10)

The RPs for y data and ISI data are abbreviated by RP1
and RP2, respectively. Figs. 7 and 8 show the RP1 and
RP2 corresponding to the Fig. 3. Figs. 7(a) and 8(a) are
complex image, because the RFC outputs complex spike-
trains. The y and the ISI data have wide band spectrum. For
q = 0.48 and 0.65, the chaotic attractors are islands and are
similar to periodic attractor, hence the RP becomes mono-
tone as shown in Figs. 7(b), 7(c), 8(b) and 8(c). The RP for
period-2-like islands (Figs. 7(c) and 8(c)) has lighter tone
than that for period-1-like islands (Figs. 7(b) and 8(b)).
Figs. 7(d) and 8(d) exhibit complex image, and we can see
RP2 is darker than RP1. In order to consider the differ-
ence between RP1 and RP2, we have calculated the plot
rate for q as shown in Fig. 9. The rate has the peak around
q = 0.48 that corresponds to the period-1 islands. The sec-
onds and third peaks correspond to higher-period islands.
Note that the difference between RP1 and RP2 increases
as q increases from q = 0.48 of the first peak. As one
reason of the difference, we can say the following: as q
increases, the equidistant ISI component and the line spec-
trum increases, whereas reset points on the base x = q have
different y component. y data can have larger variation than
the ISI data.
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Figure 7: Recurrence plot using y data for θy = 0.1, N =
500 and a = 0.2 ( (a) q = 0, (b) q = 0.48, (c) q = 0.65, (d)
q = 0.8)
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Figure 8: Recurrence plot using the ISI data for θIS I = 0.5,
N = 500 and a = 0.2 ( (a) q = 0, (b) q = 0.48, (c) q = 0.65,
(d) q = 0.8)
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Figure 9: Plot rate of recurrence plot for θy = 0.1, θIS I =

0.5, a = 0.2

5. Conclusions

We have analyzed the RFC having various chaotic dy-
namics. The spike-trains are analyzed using histogram,
RP1 and RP2. Using the histogram, we have classified the
value of the ISI. Using the RP1 and RP2, we have visu-
alized dynamical property of spike-trains. Especially, the
difference between RP1 and RP2 has been considered.
Future problems include more detailed analysis of the char-
acteristics of spike-trains for some key parameters and ex-
tracting some key measure(s) from the RP.
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