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Abstract—The particle swarm optimization (PSO)
method is a population-based optimization technique
which searches for solutions by updating simultane-
ously a number of candidate solutions called particles.
Since in PSO the exploration ability is important to
find a desirable solution, various kinds of methods have
been investigated to improve it. In this paper, we pro-
pose a restarting PSO model, where all particles are
basically updated by the same dynamical system in the
original PSO, while particles trapped at undesirable lo-
cal minima are restarted by initializing their velocities
and positions, and updates by the chaotic dynamical
system with sinusoidal perturbations during a certain
period. The restarted particles can not only escape
from the undesirable local minimum but also search
for solutions extensively by the chaotic behavior, while
particles execute the detail search around the global
best solution. Therefore, this model can be expected
to keep a balance of intensification and diversification
of the search. Through computational experiments,
we verify the performance of the proposed model by
applying it to some global optimization problems.

1. Introduction

The particle swarm optimization method (PSO) is
one of metaheuristic methods for global optimization
inspired by swarms of birds or fish [5]. This method is
a very simple algorithm with high performance. How-
ever, it is reported that for some cases almost all par-
ticles converge to an undesirable local minimum at
early stages without an extensive search. Thus, in this
method, the exploration ability is critical to find a de-
sirable solution, and various kinds of improved meth-
ods have been investigated to improve the ability [2].

In this paper, we focus on improved PSOs which ex-
ploit the chaotic dynamics. In most of those method,
some or all particles search for a solution broadly by
using a chaotic sequence generated by the well-known
function such as the logistic function [1, 3, 6]. How-
ever, since the used chaotic map is irrelevant to an
optimization problem, the behavior of particles is not
necessarily suitable to solve any problem.

On the other hand, we proposed a chaotic dynamical
system which is derived by adding sinusoidal pertur-
bation terms to the standard update rule of a particle

and showed the sufficient conditions for parameters
under which the proposed system is chaotic [10]. A
particle with the system called a chaotic particle moves
chaotically around the global and local best solutions,
while it can be expected to search for a solution in
the similar direction to the standard particle, that is,
toward two best solutions. Since a chaotic particle of-
ten cannot execute the detail search, we proposed a
PSO model which uses both of standard and chaotic
particles, and verified the effectiveness of the proposed
model than some improved PSO methods through nu-
merical experiments. However, we observed that it is
difficult to select the appropriate numbers of standard
and chaotic particles for each problem, and that a con-
siderable number of standard particles in the proposed
model are trapped at a local minimum.

Therefore, in this paper, we propose a new PSO
restarting inactive particles, which initializes particles
whose velocity is sufficiently small by resetting its posi-
tion and velocity by randomized numbers, and updates
the particle by the chaotic dynamical system during a
certain period. In addition, the detail search is re-
quired for the intensification, the model uses a small
number of standard particles which are not restarted.
Through some numerical experiments, we show the ef-
fectiveness of the proposed model.

2. Particle Swarm Optimization

In this paper, we focus on the following global opti-
mization problems having many local minima and the
rectangular constraint.

min f(x) s.t. x ∈
n∏

i=1

[xl
i, x

u
i ].

In order to solve this problem, in the PSO system a
number of candidate solutions called particle are si-
multaneously updated by exchanging the information
each other. At each iteration, particles move toward a
linear combination of two best solutions called the lo-
cal best li(t) and the global best g(t), where the former
is the best solution obtained by each particle i until it-
eration t and the latter is the best one obtained by all
particles until iteration t. Then, the update formula
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of particle i ∈ {1, . . . , L} is given by

(P1) vi(t + 1) := wvi(t) + c1r
1 ⊗ (g(t) − xi(t))

+c2r
2 ⊗ (li(t) − xi(t)),

xi(t + 1) := xi(t) + vi(t),

where xi(t) ∈ �n is a current point of particle i at
iteration t, and w, c1, c2 > 0 are weights, while r1,
r2 are randomized numbers uniformly selected from
(0, 1)n. The operation ⊗ : �n × �n → �n is defined
by (s ⊗ t)i := siti, i = 1, . . . , n. We call a particle
updated by (P1) the standard particle.

This simple approach has been applied to a great
number of global optimization problems and is re-
ported to have the ability to find high-quality solutions
[5]. However, particles sometimes tend to converge to
a local minimum at early stages for some problems,
which is called the premature convergence. Hence, in
order to improve the exploration ability, various kinds
of improved methods have been investigated [2, 4]. In
this paper, we focus on the PSO using a chaotic dy-
namical system.

3. Chaotic Particle Swarm Optimization

3.1. PSO using chaotic dynamical system

Mathematically, the chaos means an aperiodic de-
terministic behavior which is exceedingly sensitive to
its initial conditions. Even though the model of the
system is well defined and contains no random param-
eters, the behavior appears to be random. In the field
of optimization, such a behavior is exploited in some
metaheuristic methods [11, 13] for the global optimiza-
tion problem. Those methods avoid being trapped at
an undesirable local minimum by making use of the
chaotic behavior, and aim to find a desirable solution
within a practical time.

Recently, PSO making use of the chaotic dynam-
ics have been investigated [1, 3, 6, 10]. Most of those
methods use a chaotic sequence generated by a well-
known function such as the logistic function. Thus,
they can extensively search for solutions by the chaotic
sequence. Alatas, Akin and Ozer compared twelve
kinds of chaos-embedded PSO algorithms (CEPSOAs)
which use one of eight kinds of chaotic maps for the
benchmark global minimization problems [1]. They re-
port that the following model (C) is superior to other
models for these problems on average:

(C) vi(t + 1) := wvi(t) + c1r
1s1(t) ⊗ (g(t) − xi(t))

+c2r
2s2(t) ⊗ (li(t) − xi(t)),

where, s1(t) and s2(t) are chaotic sequences generated
by Zaslavskii map defined by

u(t + 1) = (u(t) + 400 + 12v(t) + 1) mod 1,

v(t + 1) = cos(2πu(t)) + v(t) exp(−3),

where {u(t)} is used as {s1(t)} or {s2(t)}. This dy-
namical system can execute a diversified search be-
cause of the sensitiveness of an initial condition. It
is reported that this method can be superior to some
improved PSOs.

However, since the used chaotic sequence is irrel-
evant to the objective function, the performance of
the search may significantly depend on each optimiza-
tion problem. Therefore, we proposed a method of
generating a chaotic sequence on the basis of the in-
formation of the local and global bests obtained by
particles. Moreover, we showed the sufficient condi-
tion under which the proposed dynamics is chaotic in
the sense of Li-Yorke [10]. Then, in the next section
we introduce the chaotic dynamical system in brief.

3.2. Perturbation based chaotic PSO

In this section, let us consider the following dynam-
ical system:

(P2) vi(t + 1) =: wcvi(t) + cc
1r

1 ⊗ (g(t) − xi(t))

+cc
2r

2 ⊗ (li(t) − xi(t))

−βω

⎛
⎜⎝

sin(ωx1(t) − ωq̄i
1(t))

...
sin(ωxn(t) − ωq̄i

n(t))

⎞
⎟⎠ ,

where positive constants β and ω are the amplitude
and the frequency of the perturbation, respectively.
q̄i(t) is a divided point of global and local bests defined
by

q̄i(t) =:
cc
1l

i(t) + cc
2g(t)

cc
1 + cc

2

.

This model is derived from an interpretation that a
particle with (P1) can be regarded as a stochastic
steepest descent method with an inertial term and a
step-size 1 for a problem minimizing x� ( 1

2x − q̄i(t)
)
.

Thus, xi(t) quickly converges to q̄i(t) if w = 0, r1
j =

r2
j = 1/2, j = 1, . . . , n, c1 and c2 are sufficiently small

and li(t) and g(t) are not updated. Then, by adding
perturbation terms to (P1), the obtained system (P2)
is chaotic around the q̄i(t). In fact, we can show the
sufficient conditions of parameter values in which (P2)
is chaotic.

Theorem 1 Suppose that w = 0 and r1
j = r2

j = 1/2,
j = 1, . . . , n and that li(t) and g(t) are not updated for
some particle i. In addition, if cc

1, cc
2, ω and β satisfy

the inequalities,

cc
1 + c2 c

2
− 2

3π
βω2 < 1 and

cc
1 + cc

2

2
+

2
π

βω2 > 4, (1)

then system (P2) is chaotic in the sense of Li-Yorke.
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We can prove this theorem by showing that q̄i(t) is a
snap-back repeller of (P2). It is well-known that if a
system has a snap-back repeller which is a kind of fixed
point, then the system is chaotic in the sense of Li-
Yorke [7], and that there exists various kinds of chaotic
sequences generated by the system which approach the
snap-back repeller, and at the same time, which are
repelled from the point. Thus, (P2) can be used in
order to search for a solution extensively without risk
of being trapped at local minima.

Moreover, if we select cc
1, cc

2, β and ω such that

0 < cc
1 + cc

2 ≤ 4, (2)
βω2 > 2π, (3)

then, (1) is satisfied. Here, cc
1 and cc

2 are usually se-
lected to satisfy (2) because it guarantees that the next
point xi(t + 1) of particle i is closer to q̄i(t) than a
current point xi(t). Hence, it is easy to select param-
eters, for example, a sufficiently large ω and a small
β, though (P2) has more parameters than (P1). This
results is simpler than conditions shown in [10].

Now, in the next section, we propose a new PSO
model which exploits the system (P2).

4. Restarting chaotic particle swarm optimiza-
tion

As mentioned above, particles with the chaotic sys-
tem (P2) can search for solutions extensively, while it
might not be able to execute the detail search around
the global best. Therefore, in order to keep a balance
of diversification and intensification of the search, it
is suitable to use both of standard and chaotic parti-
cles. In [10, 12] we proposed some models which use
both type particles simultaneously, and verified the
good performance of the proposed models for some
benchmark problems. However, we also observed that
an appropriate selection of the numbers of standard
and chaotic particles is difficult for each problem, and
moreover, that standard particles are often trapped
at around the global best, which is called an inactive
particle, until the solution is drastically changed.

Therefore, in this paper we propose a PSO which
restarts inactive particles by using the chaotic system
(P2), where all particles basically search for solutions
based on the standard dynamics (P1). If a particle is
trapped and, in addition, if the following equality is
satisfied:

n∑
j=1

(
vi

j(t)
xu

j − xl
j

)2

< n v2
th, (4)

where vth is a small positive constant, the particle i is
restarted by initializing its position and its velocity by
randomized numbers, and set li(t) =: xi(t). In addi-
tion, during a certain period, the particle is updated

by the chaotic dynamical system (P2). Since the pro-
posed particles having standard and chaotic modes, we
call it a dual-mode particle. Moreover, if so many par-
ticles are restarted simultaneously, the intensification
ability might be weakened. Thus, the proposed model
uses a small number of standard particles which are
not restarted. Therefore, this method can keep the di-
versity of the search by the chaotic dynamical system,
and execute the intensification of the search by the
standard system. We call this model the PSO using
the chaotic restarting system (PSO-CR).

Next, we compare the proposed model with the
existing PSOs which restarts inactive particles [8, 9]
Those methods restart a particle by initializing its ve-
locity or an element of the velocity by randomized
numbers. On the other hand, the proposed method
initializes not only its velocity but also its position
and its local best, which might seem to discard the
important information of promising regions. However,
the best solution obtained is always kept as the global
best. In addition, we observed that when inactive
particles are trapped at an undesirable solution, sev-
eral active particles move around there in some ex-
periments. Therefore, the proposed method can be
expected to offer lower risk of losing the important in-
formation. Moreover, the method prevents restarted
particles from being trapped again at the same local
minimum.

5. Numerical experiments

In this section, we show the results of numerical
experiments, where we applied the proposed model
PSO-CR, original PSO and CEPSOA to six bench-
mark problems, Rastrigin, Rosenbrock, Griewank, 2n-
minima, Schwefel and Levy No.5 functions. The max-
imal number of iteration was 5000, and the number
of particles was 20 in all models. We executed a
preparatory experiment to select parameter values for
CEPSOA and PSO-CR, and to select the appropriate
numbers of standard and dual-mode particles for each
problem. Then, for PSO-CR we used fifteen standard
and five dual-mode particles which was effective for
all problems, and selected suitable two kinds of sets of
parameter values, called parameter sets A and B. As
parameter set A, we used (w, c1, c2) = (0.0, 1.0, 2.5)
in (P1), (wc, cc

1, c
c
2) = (0.0, 0.3, 0.3) in (P2) and

vth = 0.0001 for Rosenbrock, Levy No.5 and Rast-
rigin functions, while as parameter set B, (w, c1, c2) =
(0.0, 0.2, 2.5) in (P1), (wc, cc

1, c
c
2) = (0.0, 0.8, 0.8) in

(P2) and vth = 0.001 for other functions, and more-
over, we set (β, ω) = (0.0002, 500) in both sets. The
average function values of the global bests obtained by
three methods are shown in Table 1, where the bold
and underlines figures indicate the first and second
best results among three methods, respectively. The
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Table 1: Comparison of PSO, CEPSOA and PSO-CR for six benchmark problems (Average objective function
values )

Function Dim. PSO
CEPSOA PSO-CR

Best param. set Two param. set Best param. set
Griewank 40 0.59826 0.019738 0.015283 0.007162
Rastrigin 40 170.92029 69.708011 23.970452 3.163157
Rosenbrock 40 36.585367 41.662483 35.634834 28.072611
Levy No.5 40 1.157437 0.097857 0.000001 0.000000
2n-minima 40 0.133943 0.066422 0.057356 0.034573
Schwefel 40 0.277059 0.146946 0.150968 0.137543

table shows that PSO-CR using the best parameter
set obtained the lowest average function values for all
problems, and that PSO-CR using parameter sets A
and B obtained the second best results for five prob-
lems except Schwefel function. These results demon-
strate that PSO-CR can find high-quality solutions by
restarting method and dual-mode particles, and that
it is not so difficult to select appropriate parameter
sets for many kinds of problems, though PSO-CR has
more parameters than PSO-IWA and CEPSOA.

6. Conclusion

In this paper, we have proposed a PSO which
restarts inactive particles to avoid stagnation of the
search. The proposed model uses two kinds of parti-
cles, a large number of dual-mode particles and a small
number of standard particles. The former particle is
basically updated by the standard dynamical system,
while it is restarted and updated by the chaotic dy-
namical system during a certain period if its velocity
is sufficiently small. The latter particle is updated by
the standard dynamical system and never restarted in
order to execute the detail search around the global
best. Thus, the proposed model can be expected to
search for solutions without the stagnation and keep
a balance of intensification and diversification in the
search. Through some numerical experiments, we have
observed that the proposed model execute more effec-
tive search than some exiting improved PSOs, and that
it is not difficult to select its parameter values.

As future research, we should investigate a condition
of restarting particles which is crucial for the proposed
PSO model to search for solutions efficiently.
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