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Abstract—Using a partition to convert a time series into
a symbolic sequence is a common method to simplify the
underlying dynamics. When the underlying dynamics is
deterministic, there is a nice partition called generating, us-
ing which one can establish one-to-one correspondence be-
tween an orbit and an infinite symbolic sequence generated
by the partition. In this talk, we extend the work of Hi-
rata, Judd, and Kilminster, Phys. Rev. E 70, 016215 (2004)
so that one can estimate a generating partition given dis-
tances between a pair of times. By using artificial and real
datasets, we demonstrate that the extended method can es-
timate generating partitions relatively accurately.

1. Introduction

Symbolic dynamics is a useful method to analyze time
series data [1]. The symbolic dynamics helps to not only
understand the underlying dynamics in a simple way [2]
but also obtain topological and metric entropies with good
accuracy [3, 4]. To construct the corresponding symbolic
dynamics from a time series, one need to have a parti-
tion which divides the phase space into a finite number of
regions. Among various partitions, generating partitions
are the nicest partitions since they can establish one-to-
one correspondence between a symbolic sequence so gen-
erated and an orbit. There are some approaches for estimat-
ing generating partitions for high-dimensional dynamics.
The first proposed approach was to use homoclinic tangen-
cies [5]. The second proposed approach was to use topo-
logical analysis [10, 11, 12]. The third approach was to as-
sign symbolic substrings consistently to unstable periodic
points [13, 14, 15]. As the fourth approach was to estimate
generating partitions directly from time series [16, 17, 18].

If one can estimate a generating partition from distances
between a pair of times, then one can construct the sym-
bolic dynamics for various types of datasets such as time
evolutions of point processes and networks. However, cur-
rently none of the above methods can be used to this setup.

In this paper, we extend the method of symbolic shad-
owing [17], a method for estimating a generating partition
from a time series, to a method such that one can estimate a
generating partition only from distances between every pair
of times. The advantage of the proposed method is that we
can drop the assumption that distances are the Euclidean.

The remaining parts of the paper are organized in the
following way: In Section 2, we review symbolic shadow-
ing [17]. In Section 3, we extend the symbolic shadowing

so that one can estimate a generating partition from dis-
tances only. In Section 4, we demonstrate the extension by
using examples. In Section 5, we conclude this paper.

2. Symbolic Shadowing

LetM be a metric space. Let x(i) ∈ M (i = 1, 2, . . . , n)
be the i-th point of time series. Let d :M×M→ {0} ∪ R+

be a distance function. For each pair (i, j) of times, we
can obtain the corresponding distance d(x(i), x( j)). In this
section, we consider the Euclidean norm. But, this point is
extended in the next section.

Let A be a set of subsets Ak ⊂ M (k = 0, 1, . . . , S − 1)
where Ak ∩ Al = ∅ for k � l and ∪S−1

k=0 Ak = M. This A
is called a partition. For each i, assign a symbol si = k by
x(i) ∈ Ak. Here S is the number of symbols as well as the
number of the elements for the partition.

The substring for i with n− backward and (n++1) forward
symbols is si−n− si−n−+1 . . . si−1.si si+1 . . . si+n+ for i = n− +
1, . . . , n − n+. Let us classify {x(i)} using their substrings.
To show a general substring with n− backward and (n+ + 1)
forward symbols, we use σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ .
Let I(σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ ) be a set of time
indexes i such that si+ j = σ j for j = −n−,−n− +
1, . . . , n+. Elements of such a set might be called mem-
bers. Let Σ[n− ,n+] : M → {0, . . . , S − 1}n−+n++1 be a
function such that Σ[n− ,n+](x(i)) = si−n− . . . si−1.si . . . si+n+ .
In addition, for σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ , choose a
point in M called a representative, which is denoted by
r(σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ ).

It is the result of Ref. [17] that we can choose a set of
representatives such that supx∈M d(x, r(Σ[n−,n+](x))) → 0 as
n−, n+ → ∞ if and only if the partition is generating.

Practically, a generating partition can be estimated using
symbolic shadowing [17]. In this method, the following
optimization problem is solved approximately:

min
{si},{r(·)}

n−n−∑

i=n++1

‖x(i) − r(Σ[n− ,n+](x))‖2. (1)

The cost function is minimized as similarly as the
expectation-maximization algorithm. Namely, we first fix a
symbolic sequence and minimize the cost function over the
representatives. Then, we fix the representatives and min-
imize the cost function over the symbolic sequence. And
we repeat this iterations until it converges. The details of
the algorithm are as follows:
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(1): Generate a random symbolic sequence whose length
is the same as the given time series.

(2): Let a be the initial length of substrings. Let n− =

a/2� and n+ = 
(a − 1)/2�.

(3): For each point x(i), find the closest representative
r(σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ ) and assign s(i) as
s(i) = σ0.

(4): For each existing substring σ−n− . . . σ−1.σ0 . . . σn+ ,
find its representative by minimizing

∑n−n−
i=n++1 ‖x(i) −

r(Σ[n− ,n+](x(i)))‖2. Namely, find the representative by

r(σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ )

=

∑
i∈I(σ−n− σ−n−+1 ...σ−1 .σ0σ1 ...σn+ ) x(i)

|I(σ−n−σ−n−+1 ...σ−1 .σ0σ1...σn+ )| .
(2)

(5): If Steps (3) and (4) do not change the symbolic se-
quence and the set of representatives, go to Step (6).
Otherwise, go to Step (3).

(6): If the length of substring reached the pre-assigned
maximum length, then finish the algorithm. Other-
wise, increase a by a← a+1, increment n− and n+ by
n− = 
a/2� and n+ = 
(a − 1)/2�, and go back to Step
(3).

3. An Extension

In this section, we extend the symbolic shadowing [17]
so that we can estimate a generating partition from dis-
tances between pairs of times only. To realize this exten-
sion, we need to eliminate the averaging operation appear-
ing in Step (4) of the above algorithm. Therefore, we re-
place the averaging by finding the member for each sub-
string that has the minimum average distance between the
members.

The details of the algorithm are as follows:

(1): Generate a random symbolic sequence whose length
is the same as the given time series.

(2): Let a be the initial length of substrings. Let n− =

a/2� and n+ = 
(a − 1)/2�.

(3): For each point x(i), find the closest representative
r(σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ ) and assign s(i) as
s(i) = σ0.

(4): For each existing substring σ−n− . . . σ−1.σ0 . . . σn+ ,
find its representative by finding the representative as

r(σ−n−σ−n−+1 . . . σ−1.σ0σ1 . . . σn+ ) =
arg min

x(i):i∈I(σ−n− ...σ−1 .σ0...σn+ )

∑
j∈I(σ−n− ...σ−1 .σ0...σn+ ) d(x(i), x( j)).

(3)

(5): If Steps (3) and (4) do not change the symbolic se-
quence and the set of representatives, go to Step (6).
Otherwise, go to Step (3).
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Figure 1: The estimated partition for a time series gener-
ated from the Hénon map.

(6): If the length of substring reached the pre-assigned
maximum length, then finish the algorithm. Other-
wise, increase a by a← a+1, increment n− and n+ by
n− = 
a/2� and n+ = 
(a − 1)/2�, and go back to Step
(3).

Please confirm that the above algorithm works if we can
obtain the distance for every pair of time points. There-
fore, we can drop the assumption that the used distances
are Euclidean. We call this algorithm the extended sym-
bolic shadowing.

4. Examples

4.1. Hénon map

First, we applied the extended symbolic shadowing to
a time series generated from the Hénon map. Here, the
length of time series was 10 000. Then, we generated a
random binary symbolic sequence of length 10 000. We
started the extended symbolic shadowing with the sub-
strings of length 2 and stopped it when the substrings
reached the length of 12 and the algorithm converged. The
obtained partition (Fig. 1) looked similar to the ones in
Refs. [5, 17]. Out of 10 000 symbols, there were 12 differ-
ent symbols between the result of the symbolic shadowing
and that of its extension.

4.2. Ikeda map

Second, we applied the extended symbolic shadowing to
a time series generated from the Ikeda map. The condi-
tions were the same as the case of the Hénon map. The
obtained partition (Fig. 2) looked similar to the ones in
Refs. [13, 17]. There were 19 different symbols out of 10
000 symbols between the result of the symbolic shadowing
and the one of its extension.
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Figure 2: The estimated partition for a time series gener-
ated from the Ikeda map.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s(t)

s(
t+

1)

Figure 3: The estimated partition for a time series of the
squid giant axon [19].

4.3. Squid giant axon

In addition, we applied the extended symbolic shadow-
ing to the time series of the giant squid axon [19]. Here,
we discarded the first 100 points to eliminate the transient
part of the dataset. Then, we started the algorithm with
a random binary symbolic sequence using the substrings
of length 2, and stopped it when the length of substrings
reached 8 and the algorithm converged. The obtained par-
tition (Fig. 3) was exactly the same as the one obtained in
Ref. [2].

These three examples showed that the extended sym-
bolic shadowing worked well when generating partitions
exist.

5. Conclusions

In this paper, we have extended the method for symbolic
shadowing so that one can estimate a generating partition
only from a set of distances between every pair of times.
We demonstrated that the extension works well using time
series of the Hénon map, the Ikeda map, and the squid giant
axon. The proposed extension will provide insight into the

complex dynamics described by time evolutions of point
processes and networks.
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