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Abstract—A two-dimensional piecewise smooth
continuous model describing a circuit proposed as
chaos generator is analyzed. The parameter space is
investigated in order to classify regions of existence of
stable cycles, and regions associated with chaotic be-
haviors. Border collision bifurcation curves and de-
generate flip bifurcation curves are analytically de-
tected. Moreover, the homoclinic bifurcations occur-
ring in cyclical chaotic regions leading to chaos in one-
piece are also detected.
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1. Introduction

Chaotic signals appear to be interesting signals for
many applications, particularly in telecommunications
and transmissions. For some kind of applications, it is
necessary to consider robust chaos [1], which can en-
dure, even if parameters values are slightly changed.
A way to obtain robust chaotic signals is to con-
sider systems where border collision bifurcations ap-
pear [2][3][7][8]. We have previously proposed a chaos
generator, which is a switching circuit where a latch is
used to modify the behaviour of a analogical circuit,
where such kind of bifurcations occur [4][5][6]. In this
paper, we continue to analyze our circuit by consid-
ering border collision bifurcations and degenerate flip
bifurcations and to put in evidence robust chaos. Our
paper is organised as follows : in section 2, we recall
the circuit and its modeling; in section 3, we analyze
the bifurcations and the route to chaos in a peculiar
case.

2. Description of the circuit

The circuit is shown in Figure 1 and its model has
been introduced in a more detailed way in [4][5][6].
Just recall that the state variables of the system are
the two voltage capacitor v,(¢) and vy, (t). At every
clock period T, the flip-flop is set and then the switches
position is 1’. When one of the capacitance voltages
reaches the reference value V¢, the two switches are
turned toward their position ’0’. So, according to the
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Figure 1: The circuit

switches position, the two capacitors are simultane-
ously charging or discharging. Thus, using classical
models of circuits, we easily obtain the equations of
the system. We consider the case when V, = V,. Let
us recall the parameter normalization:
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The normalized state variables are given by:
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The following switching curves in @ = [0, 1] x [0, 1]:
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assuming xp > 0 and y, > 0, which occurs for
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define three different domains in @ (see Figure 2):

Dy ={(z,9)|0<z<ap, and 0 <y < yp}
Dy = {(z,y)| zp <z <1 and A(z,y) >0}  (5)
D3 = {(z,y)| y» <y <1and A(z,y) <0}



in which the system is defined by different func-
tions. In fact, the circuit is modelled by the map
(11, Ynt1) = T(xn, yn) as follows:
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(6)
It is easy to see that the map is well defined as T is

continuous and maps the square @ (the phase space of
interest) into itself.

yl Dy

b A

y D,
D,

0

Figure 2: Phase space @ and three different regions
D;

3. Analysis of bifurcations and route to chaos

In this section we analyze the bifurcations occurring
in the circuit modelled by T given in (6). The model
is described by a continuous piecewise smooth map
which depends on three parameters «, p and §, under
the constraints given in (1) and (4). The function 7} is
affine and its fixed point, say X7 = (z7,y7) = (o, a),
is outside the square @ (as o > 1) and thus it is a
so-called virtual fixed point [2]. Moreover both eigen-
values of T} are positive and less than 1, so the virtual
fixed point is a stable node. This implies that initial
conditions inside the region D; are mapped towards
the virtual attractor and are forced to enter in a dif-
ferent region, Do or D3, from which the iterated points
are kept inside Q.
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Figure 3: Bifurcation diagram in the parameter plane
(1, 0) at @ = 1.1. Colored regions denote the existence
of stable k-cycles. The white region corresponds to the
existence of robust chaos.

Figure 3 shows a two-dimensional bifurcation dia-
gram in the parameter plane (u,d) obtained via nu-
merical computations at o = 1.1 fixed, in different
colors are evidenced periodicity regions of attracting
cyles. It is immediate to see a difference between the
region in p > 1 and that in p < 1. The case p =1
has been studied in [5]. It is enough to study one case
only between ¢ > 1 and p < 1, indeed, the following
proposition holds:
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Figure 4: Some bifurcation curves obtained from

Proposition 2 and corresponding to limit of periodicity
regions in Figure 3.

Proposition 1. The two cases pn > 1 and p < 1
are topologically conjugated.

The proof follows immediately due to the following
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property:
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The case p > 1 has been extensively studied in [6].
In this paper, we present some results for the case
i < 1. As it has been proved in [6] for > 1, by using
the following properties of 7" when pu < 1 :

e The dynamics of T are described by interactions
between T and T3

e T is an affine map,
e T3 is a triangular map,

e we can do a change of variables in order to get
a piecewise 2-dimensional smooth map, for which
we know very well the dynamics and the bifurca-
tions; it is then possible by reversing the variables
to get the bifurcation curves for our system,

we obtain the following proposition :

Proposition 2.

1. Let p <1 and a > a* =14 §/*. Then the fived
point X3 of Ts is globally attracting in the state
space Q. At o = o* a degenerate flip bifurcation
occurs and an arc of invariant curve in the region
Ds is filled with stable 2—cycles. (cf. Figure 5)

Let now 1 < a < a* =1+ 6Y#. Then :

2. The stable 2—cycle of T undergoes a degenerate
flip bifurcation, at the bifurcation curve given by:

DFBy :  a=1+6/* (8)
which may lead to m—cyclical chaotic sets of any
even period m, which undergo bifurcations, merg-
ing in pair, up to a one-piece chaotic set.

3. For any k > 3 pairs of k—cycles, one of which
may be locally stable and one unstable, appear via
border collision bifurcation crossing the bifurca-
tion curve BC By given by:

(1 —68)6k—1/n

BCBk : W

oa=1+
which are mazximal cycles, the stable one has one
periodic point in Ds and (k-1) points in Dq; the
unstable one has two periodic points in D3 and
(k-2) points in D;.

4. For any k > 3 the stable k—-cycle undergoes a
degenerate flip bifurcation at the bifurcation curve
given by:

DFBj : a=1+d§"/* (10)

so that the stability region of the k—cycle (colored
regions in Figure 3) is given by (a,0) € Il =

{o) 148 ca<1+ CERETE T <o <1
(11)

5. Crossing the degenerate flip  bifurcation
DF By, there is the appearance of 2k—-cyclical
chaotic sets, which merge into k—cyclical chaotic
sets at the homoclinic bifurcation occurring at the
bifurcation curve Hj given by:

§2k/1

Hj, - -
S s D

=0 (12)
which in turn merge into one piece chaotic set at
the homoclinic bifurcation occurring at the bifur-

cation curve Hj, given by:

§k/ 1

’ . .

=0.

(13)

In fact the dynamic behaviors of the 2-dimensional
map obtained after the change of variables is related to
the dynamics of a one-dimensional skew tent map ([10]
and references therein) which are completely known.
This is the reason why we can obtain all the bifurcation
curves analytically.

Results of Proposition 2 are illustrated in Figure 6
and Figure 7 via bifurcation diagrams. We can see
the degenerate flip bifurcations for fixed point X3, 2
and 3-cycles, border collision bifurcations for 3-cycles
and homoclinic bifurcations for 6-pieces and 3-pieces
chaotic attractors. A robust chaotic attractor is shown
on Figure 8.
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Figure 5: Degenerate flip bifurcation of fixed point
X3. Infinitely many 2-cycles exist on an invariant arc
in D3, the stable set of which is the horizontal line
through the cycles.
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Figure 8: Robust chaotic attractor in the phase space
(x,y), located in Dy and Ds.
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