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Abstract— In this study, we propose a neuro-glia net-
work with neurogenesis based on a Multi-Layer Percep-
tron (MLP) with pulse glial chain based on individual in-
activity period. This network has a connection between a
glia and a neuron in a hidden-layer. The glia generates a
pulse and this pulse is propagated to the neurons and the
neighboring glias. The pulse generation cycle is dynami-
cally changed by the neuron output. By a frequency of the
pulse generation, the glia chooses an important neuron and
an unimportant neuron. In the neurogenesis, the unimpor-
tant neuron is removed and a newborn neuron is connected
in the same position as the removed neuron. We consider
that the pulse of the glia gives an energy for escaping out
from a local minimum, moreover the number of contribu-
tory neurons for the network performance increase by the
neurogenesis. We confirm that the proposed MLP has a
better performance than the previous MLP and show char-
acteristics of the proposed MLP.

1. Introduction

Brain is composed of two kinds of nerve cells which
are a glia and a neuron. The neuron has been investigated
about biological characteristics and applications for many
years. The neurons connect with other neurons and trans-
mit electric signals each other. On the other hand, the glia
was considered to the supporting cell for the neuron. Actu-
ally, the glia exists between the neurons and a blood vessel
and provides necessary nutrients which are carried into the
blood vessel to the neurons. Recently, some researchers
reported that the glia controls an ion concentration [1]-[3].
The glia uses various kinds of ions such as a glutamate acid,
an adenosine triphosphate, a Ca**, and so on [4]. Among
them, we focus on the CaZ*. The concentration of the Ca*
increases by the excited glia and the increasing of the con-
centration of the Ca®* excites the neighboring glias. The
change of the concentration of the Ca?* triggers a chain re-
action. Moreover, the glia transmits signals to other glias
by the concentration of the Ca®*.

In the previous study, we proposed the Multi-Layer Per-
ceptron (MLP) with pulse glial chain based on individual
inactivity period which is inspired from the biological char-
acteristics of the glia [5]. We one-by-one connect the glias
with the neurons in the hidden-layer. The glia generates
the pulse when the neuron output is larger than the thresh-
old of the excitation of the glia. The generated pulse is

transmitted to the connecting neuron and the neighboring
glias. The neighboring glias are excited by the transmitted
pulse and generate the pulse, thus the pulse is transmitted
into the glial network. In the previous MLP, a period of in-
activity (interval of the pulse generation) becomes shorter
according to the connecting neuron output. Thereby, the
pulse generation becomes different pattern in each glia.
This change of the pattern in each glia gives variety for
the learning of the MLP and improves the learning perfor-
mance. Moreover, we check the number of pulse genera-
tions in each glia during the iterations, thereby important
neurons for the network performance are connected with
the glias which generate many pulses.

In this study, we propose the neuro-glia network with
neurogenesis which is extended from the MLP with pulse
glial chain based on individual inactivity period. The glia
can find the important neurons and the unimportant neu-
rons by the pulse generation. In this network, the unim-
portant neurons in the hidden-layer are removed and the
newborn neurons are connected in the same position, then
the weight of connections defines at random (we call this
process ‘neurogenesis’). By the neurogenesis, we consider
that the number of contributory neurons for the network
performance increase. We confirm that the performance of
the proposed MLP improves than the previous MLP, more-
over we show the characteristics of the proposed MLP by
the computer simulations.

2. Proposed MLP

The MLP is one of feed forward neural networks. This
network can be applied to various nonlinear tasks. The out-
put of the MLP is decided by the weight of connection be-
tween the neurons. In general, the weight of connection is
tuned by a Back Propagation (BP) algorithm [6]. The BP
algorithm is useful for the learning of the MLP, however
this algorithm often falls into a local minimum.

In the proposed MLP, we connect the glias with the neu-
rons shown as Fig. 1. The glia is excited by the output of
the connecting neuron. Then, the glia generates the pulse.
This pulse is input to the connecting neuron threshold and
is transmitted to the neighboring glias. The neighboring
glias are excited by the transmitted pulse and also generate
the pulse. Thereby, the pulse is transmitted into the glial
network. Moreover, the period of inactivity of the glia be-
comes shorter when the glia is excited in continuity. By
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this process, each glia has a different pulse generation cy-
cle. In the proposed MLP, we introduce the neurogenesis
into the neurons in the hidden-layer. The neurogenesis hap-
pens at a regular iteration. The removed neuron is chosen
by the number of pulse generations of the connected glia. If
the number of the pulse generation of the connected glia is
smaller than the decided value, the connecting neurons are
removed and newborn neurons are connected in the same
position. The weight of connection of the newborn neuron
is decided at random.
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Figure 1: Proposed MLP.

2.1. Updating rule of neuron

The neuron has multi-input and single output. The stan-
dard updating rule of the neuron is defined by Eq. (1).

n
e+ 1) =f [Z Wi (0x;(0) - e,m] : M
j=1
where y is an output of the neuron, w is a weight of con-
nection, x is an input of the neuron, and 6 is a threshold of
neuron. In this equation, the weight of connection and the
threshold of the neuron are learned by BP algorithm. Thus,
the neuron output is depended on the BP learning. Next, we
show a proposed updating rule of the neuron. We add the
glial pulse to the threshold of neuron. We use this updating
rule to the neurons in the hidden layer. It is described by
Eq. (2).

v+ =f Z wii(Dxj(t) — 6;() + ari(2) |, 2)
=

where « is a weight of the glial effect. We can change the
glial effect by change of . In this equation, the weight
of connection and the threshold are changed by BP algo-
rithm. The glial is independent from BP algorithm, thus
the weight of the glial effect is not changed by BP algo-
rithm. Equations (1) and (2) uses a sigmoidal function for
an activating function which is described by Eq. (3).

fla)y = 3)
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where a is an inner state.

2.2. Glial pulse

The glia has a response to the output of the connecting
neuron. The glia response is described by Eq. 4.

Yit+1) =
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where ¢ is an output of a glia, i is a position of the glia, 6, is
a glia threshold of excitation, y is an output of a connected
neuron, D is a delay time of a glial effect, 7 is local time of
the glia during a period of inactivity, 6, is a length of the
period of inactivity, y is an attenuated parameter. When the
output of the connecting neuron is larger than the excitation
threshold of the glia, the glia generates pulse. Then, the
output of the glia  has 1. After that the pulse decreases in
an exponential fashion. The pulse excites the neighboring
glia which has a delay of the iteration D.

In the previous study, we proposed the glia which dy-
namically changes the period of inactivity according to the
output of the connecting neuron. If the glia continuously
receives the large output from the connecting neuron, the
period of inactivity (6,) of this glia becomes shorter. Each
glia has different period of inactivity, thereby the glial net-
work obtains the various pulse generation pattern. The
change of the period of inactivity and the pulse generation
are shown in Fig. 2.
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(b) Pulse generation (periodic).

Figure 2: Varying period of inactivity. (a) The frequency
of the pulse generation. (b) Periodic pulse generation.

2.3. Neurogenesis

The neurogenesis happens into the adult human brain,
moreover some researchers reported that the connecting
position of the newborn neuron is decided by the glia [7].
In the proposed model (shown as Fig. 3), we introduce the
neurogenesis to the neurons in the hidden-layer. We count
the number of excitations of the glia. If the number of ex-
citations of the glia is smaller than the constant value, the
neuron is removed and the newborn neuron is connected
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in the same position. We give the random value to every
weight of connection of the newborn neuron.
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Figure 3: Neurogenesis.

3. Simulation

In this study, we use a Two-spiral Problem (TSP) for the
simulation task shown as Fig. 4. The TSP is a famous task
for the artificial neural network and has a high nonlinearity
[8] [9]. The MLP learns the classification of the spirals.
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Figure 4: Two-Spiral Problem.

In this simulation, we compare the three kinds of the
MLPs which are;

(1) The standard MLP.

(2) The MLP with pulse glial chain based on individual
period of inactivity.

(3) The neuro-glial network with neurogenesis.

The standard MLP does not have an external unit, thus this
MLP often falls into a local minimum. The MLP with pulse
glial chain based on the individual period of inactivity is
the previous model which was proposed in WCCI’ 14. We
use a Mean Square Error (MSE) for the evaluation of the
performance. The MSE is described by Eq. (5).

1N
MSE =— > (T, - 0,)?
S N;(n 0,), S

where T is a supervised signal and O is a output value of
the neuron in the output-layer.

3.1. Learning performance

We obtain the result from 100 trials, and one trial has
100000 iterations. In every trial, we give different initial
condition. In this simulation, the neurogenesis happens
at 50000 iterations. Then, if the number of pulse genera-
tions is small, the neuron is removed and we set a newborn
neuron. From the simulation result, we obtain four kinds
of evaluation indexes which are average, minimum, maxi-
mum, and standard deviation. Firstly, we show a learning
performance when the MLP learns the 98 spiral points. The
simulation result is shown in Table 1. From this result, the
standard MLP is the worst of all in the average. This MLP
often falls into a local minimum. Actually, the maximum
of the error is the highest of all. The proposed MLP has a
better performance than the previous MLP in the average,
the minimum, and the standard deviation.

Table 1: Learning performance of spiral of 98 points.

Average Minimum Maximum Std. Dev.
(I) 0.03443  0.00007 0.18375 0.02422
(2) 0.00340  0.00005 0.04102 0.00845
(3) 0.00188  0.00015 0.03071 0.00517

Next, we show the result when the MLP learns 130 spiral
points in Table 2. The result trend is similar to the previous
simulation. The proposed MLP has a better performance
than the others.

Table 2: Learning performance of spiral of 130 points.

Average Minimum Maximum Std. Dev.
(I) 0.09604  0.00027 0.23087 0.05751
(2) 0.00904  0.00037 0.04685 0.01161
(3) 0.00827  0.00087 0.04633 0.00975

3.2. Learning curve

We show an example of the learning curve of the pro-
posed MLP and the previous MLP in Fig. 5. In the pro-
posed MLP, the neurogenesis happens at 50000 iterations.
Both learning curves have the same orbit until 50000 itera-
tions. The learning curve of the previous MLP converges.
The learning curve of the proposed MLP is also converges
at 50000 iterations. However, the error decreases from
50000 iterations. We consider that the unimportant neu-
rons are removed by the neurogenesis, thereby the impor-
tant neurons increase and the MLP learning performance
improves.

3.3. Importance of neurons

In this simulation, we confirm the importance of the neu-
rons in the hidden-layer for the network performance. We
remove one neuron in the hidden-layer of the learned MLP
and obtain the error between the true value and the out-
put. By this simulation, we can obtain contribution ratio of
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Figure 5: Learning curves.

each neuron for the MLP performance. The result is shown
in Fig. 6. (a) shows the frequency of the pulse generation
in each neuron to the total iterations. (b) and (c) show the
error value for each removed neuron position when we re-
move one neuron in the hidden-layer. When the error of
the output is high, this neuron has high contribution for the
MLP performance. Thus, this neuron is the important neu-
ron. We can see that the number of pulse generations corre-
late to the importance of the neuron. In the previous MLP,
half of neurons become the unimportant neuron. On the
other hand, some neurons become important neuron in the
proposed MLP. We can say that unimportant neurons are
chosen and are renewed to newborn neuron, thereby some
neurons becomes to the important neuron.

0.025
0.02

rons in the hidden-layer. The glia generates the pulse ac-
cording to the output of the connecting neurons. The pulse
is transmitted to the neighboring glias and the threshold
of the connecting neuron. The period of inactivity of the
glia becomes shorter when the glia continually receives the
large output of the connecting neuron. We check the fre-
quency of the pulse generation. When the frequency of the
pulse generation is lower than the decided value, this neu-
ron is deleted and the newborn neuron is connected in the
same position. By the computer simulation, we confirmed
that the proposed MLP obtains the better performance than
the previous MLP, moreover, the number of the important
neurons increase by the neurogenesis.
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