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Abstract—In this talk, we will focus on the time av-
eraged distributions for continuous-time quantum walks
(CTQWs) and Szegedy’s walk a type of discrete-time quan-
tum walks (DTQWs) on the path graph induced by the birth
and death chain (discrete-time random walk with reflecting
walls) on it.

1. Introduction

The study of quantum walks, known as quantum coun-
terparts of random walks, has been extensively developed
in various fields during the last 20 years. There are good
review articles for these developments such as Kempe
[5], Kendon [6], Venegas-Andraca [13, 14], Konno [7],
Manouchehri and Wang [8], and Portugal [10].

In this talk, we will focus on the time averaged distri-
bution of a variant of discrete time quantum walk (DTQW)
so-called Szegedy’s walk [12]. On the path graph, the spec-
tral properties of Szegedy’s walk are directly connected to
the theory of (finite type) orthogonal polynomials. There
are studies of the distribution of Szegedy’s walk on the path
graph for example [2, 4, 9, 11].

2. Definition of the models

In order to define our models, we consider the path graph
Pn+1 = (V(Pn+1), E(Pn+1)) with the vertex set V(Pn+1) =
{0, 1, . . . , n} and the (undirected) edge set E(Pn+1) = {( j, j+
1) : j = 0, 1, . . . , n − 1}. On the path graph Pn+1, we define
a discrete time random walk (DTRW) with reflecting walls
as follows:

Let pL
j be the transition probability of the random walker

at the vertex j ∈ V(Pn+1) to the left ( j − 1 ∈ V(Pn+1)).
Also let pR

j = 1 − pL
j be the transition probability of the

random walker at the vertex j ∈ V(Pn+1) to the right ( j +
1 ∈ V(Pn+1)). For the sake of simplicity, we assume 0 <
pL

j , p
R
j < 1 except for j = 0, n. We put the reflecting walls

at the vertex 0 ∈ V(Pn+1) and the vertex n ∈ V(Pn+1), i.e.,
we set pR

0 = pL
n = 1. We also call this type of DTRW as the

birth and death chain.
We define a positive constant Cπ as

Cπ := 1 +
n∑

j=1

pR
0 · p

R
1 · · · p

R
j−1

pL
1 · p

L
2 · · · p

L
j

.
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By using this constant, we can define the stationary distri-
bution {π(0), π(1), . . . , π(n)} as

π( j) =


1

Cπ
if j = 0,

1
Cπ
·

pR
0 ·p

R
1 ···p

R
j−1

pL
1 ·p

L
2 ···p

L
j

if j = 1, 2, . . . , n.

Note that π( j) > 0 for all j ∈ V(Pn+1) and the stationary
distribution is satisfied with so-called the detailed balance
condition,

π( j) · pR
j = pL

j+1 · π( j + 1),

for j = 0, 1, . . . n − 1.
In order to define a continuous time quantum walk

(CTQW) corresponding to the DTRW, we introduce the
normalized Laplacian matrix L. Let P be the transi-
tion matrix of the DTRW. Also we define diagonal matri-
ces D1/2

π := diag
(√
π(0),

√
π(1), . . . ,

√
π(n)

)
and D−1/2

π =

diag
(
1/
√
π(0), 1/

√
π(1), . . . , 1/

√
π(n)

)
. The normalized

Laplacian matrix L is given by

L := D1/2
π (In+1 − P) D−1/2

π = In+1 − D1/2
π PD−1/2

π ,

where In+1 be the (n+1)×(n+1) identity matrix. We should
remark that the matrix

J := D1/2
π PD−1/2

π ,

is referred as the Jacobi matrix. So we can rewrite L as
L = In+1 − J.

By using the detailed balance condition, we obtain

J j,k = Jk, j =


√

pL
j pR

j+1, if k = j + 1,

0, otherwise.

Thus L = In+1 − J is an Hermitian matrix (real symmetric
matrix). The CTQW which is discussed in this paper is
driven by the time evolution operator (unitary matrix)

UCT QW (t) := exp (itL) :=
∞∑

k=0

(it)k

k!
Lk,

where i is the imaginary unit. Let XC
t (t ≥ 0) be the random

variable representing the position of the CTQWer at time t.
The distribution of XC

t is determined by

P
(
XC

t = k|XC
0 = j

)
:=

∣∣∣⟨k|UCT QW (t)| j⟩
∣∣∣2 = ∣∣∣∣(UCT QW (t)

)
k, j

∣∣∣∣2 ,

– 442 –

2022 International Symposium on Nonlinear Theory and Its Applications,
NOLTA2022, Virtual, December 12-15, 2022

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.



where | j⟩ is the (n + 1)-dimensional unit vector (column
vector) which j-th component equals 1 and the other com-
ponents are 0 and ⟨v| is the transpose of |v⟩, i.e., ⟨v| = T |v⟩.

Hereafter we only consider XC
0 = 0 , i.e., the CTQWer

starts from the left most vertex 0 ∈ V(Pn+1), cases. The
time averaged distribution p̄C of the CTQW is defined by

p̄C( j) := lim
T→∞

1
T

∫ T

0
P

(
XC

t = j|XC
0 = 0

)
dt,

for each vertex j ∈ V(Pn+1). We define a random variable
X̄C

n as P
(
X̄C

n = j
)
= p̄C( j).

In this talk, we also deal with a type of discrete time
quantum walk (DTQW) corresponding to the DTRW so-
called Szegedy’s walk. The time evolution operator for the
DTQW is defined by U = S C with the coin operator C and
the shift operator (flip-flop type shift) S . The coin operator
C is defined by

C = |0⟩⟨0| ⊗ I2 +

n−1∑
j=1

| j⟩⟨ j| ⊗C j + |n⟩⟨n| ⊗ I2,

where I2 is the 2 × 2 identity matrix and ⊗ is the tensor
product. The local coin operator C j is defined by

C j = 2|ϕ j⟩⟨ϕ j| − I2, |ϕ j⟩ =

√
pL

j |L⟩ +
√

pR
j |R⟩,

where |L⟩ = T [1 0] and |R⟩ = T [0 1]. The shift operator S
is given by

S (| j⟩ ⊗ |L⟩) = | j − 1⟩ ⊗ |R⟩, S (| j⟩ ⊗ |R⟩) = | j + 1⟩ ⊗ |L⟩.

Let XD
t (t = 0, 1, . . .) be the random variable representing

the position of the DTQWer at time t. In this paper, we only
consider XD

0 = 0 cases. The distribution of XD
t is defined

by

P
(
XD

t = j|XD
0 = 0

)
: =

∥∥∥(⟨ j| ⊗ I2) UDT QW (t) (|0⟩ ⊗ |R⟩)
∥∥∥2

=
∣∣∣(⟨ j| ⊗ ⟨L|) UDT QW (t) (|0⟩ ⊗ |R⟩)

∣∣∣2
+

∣∣∣(⟨ j| ⊗ ⟨R|) UDT QW (t) (|0⟩ ⊗ |R⟩)
∣∣∣2 .

We also consider the time averaged distribution p̄D of the
DTQW defined by

p̄D( j) := lim
T→∞

1
T

T−1∑
t=0

P
(
XD

t = j|XD
0 = 0

)
,

for each vertex j ∈ V(Pn+1). We define a random variable
X̄D

n as P
(
X̄D

n = j
)
= p̄D( j).

3. Relations between X̄C
n and X̄D

n

Since the Jacobi matrix J is a real symmetric matrix with
simple [3] and symmetric [2] eigenvalues, we obtain eigen-
values 1 = λ0 > λ1 > · · · > λn−1 > λn = −1 and corre-
sponding eigenvectors {|vℓ⟩}nℓ=0 as an orthonormal basis of

n-dimensional complex vector space Cn. Thus we have the
spectral decomposition

J =
n∑
ℓ=0

λℓ |vℓ⟩⟨vℓ |.

Noting that L = In+1 − J, the spectral decomposition of
UCT QW (t) is given by

UCT QW (t) =
n∑
ℓ=0

exp [it (1 − λℓ)] |vℓ⟩⟨vℓ |

= eit
n∑
ℓ=0

e−itλℓ |vℓ⟩⟨vℓ |.

Because of simple eigenvalues of the Jacobi matrix J, the
time averaged distribution p̄C is expressed by

p̄C( j) =
n∑
ℓ=0

|⟨ j|vℓ⟩|2 |⟨vℓ |0⟩|2 =
n∑
ℓ=0

|vℓ( j)|2 |vℓ(0)|2 ,

where vℓ( j) is the jth component of |vℓ⟩.
On the other hand, the spectral decomposition of

UDT QW (t) is given (see e.g. [2, 4, 11, 12]) by

UDT QW (t) = µ0|u0⟩⟨u0|

+

n−1∑
ℓ=1

 1
2(1 − λ2

ℓ
)

∑
±

µ±ℓ |u±ℓ⟩⟨u±ℓ |


+ µn|un⟩⟨un|,

where
µ0 = λ0 = 1, |u0⟩ = |v0⟩,

µ±ℓ = exp
(
±i cos−1 λℓ

)
, |u±ℓ⟩ = |vℓ⟩ − µ±ℓ S |vℓ⟩,

µn = λn = −1, |un−1⟩ = |vn−1⟩,

with

|vℓ⟩ = vℓ(0)|0⟩ ⊗ |R⟩ +
n−1∑
j=1

vℓ( j)| j⟩ ⊗ |ϕ j⟩ + vℓ(n)|n⟩ ⊗ |L⟩.

All the eigenvalues of UDT QW (t) are also simple, the time
averaged distribution p̄D is expressed by

p̄D( j) =
{
|(⟨ j| ⊗ ⟨L|) |u0⟩|

2 + |(⟨ j| ⊗ ⟨R|) |u0⟩|
2
}
|⟨u0| (|0⟩ ⊗ |R⟩)|2

+

n−1∑
ℓ=1

[
1

2(1 − λ2
ℓ
)

∑
±

{
|(⟨ j| ⊗ ⟨L|) |u±ℓ⟩|2

+ |(⟨ j| ⊗ ⟨R|) |u±ℓ⟩|2
}
|⟨u±ℓ | (|0⟩ ⊗ |R⟩)|2

]
+

{
|(⟨ j| ⊗ ⟨L|) |un⟩|

2 + |(⟨ j| ⊗ ⟨R|) |un⟩|
2
}
|⟨un| (|0⟩ ⊗ |R⟩)|2 .

More concrete expression of p̄D in terms of eigenvalues
and eigenvectors of the Jacobi matrix J is given as follows
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(rearrangement of Eq.(10) in [2]):

p̄D( j) =
1
2
|v0( j)|2 |v0(0)|2 +

1
2
|vn( j)|2 |vn(0)|2

+
1
2

n∑
ℓ=0

|vℓ( j)|2 |vℓ(0)|2

+
1
2

n−1∑
ℓ=1

1
1 − λ2

ℓ

{
pR

j−1 |vℓ( j − 1)|2 − λ2
ℓ |vℓ( j)|2

+ pL
j+1 |vℓ( j + 1)|2

}
|vℓ(0)|2 ,

with conventions pR
−1 = vℓ(−1) = pL

n+1 = vℓ(n + 1) = 0.

Now we consider the distribution functions F̄C
n (x) :=

P
(
X̄C

n ≤ x
)
=

∑
j≤x p̄C( j) of X̄C

n and F̄D
n (x) := P

(
X̄D

n ≤ x
)
=∑

j≤x p̄D( j) of X̄D
n . For each integer 0 ≤ k ≤ n − 1, we have

F̄C
n (k) =

k∑
j=0

p̄C( j) =
k∑

j=0

 n∑
ℓ=0

|vℓ( j)|2 |vℓ(0)|2
 .

We also obtain the following expression by using pL
j + pR

j =

1, pR
0 = 1 and pL

1 |vℓ(1)|2 = λ2
ℓ |vℓ(0)|2:

F̄D
n (k) =

k∑
j=0

p̄D( j)

=
1
2

k∑
j=0

|v0( j)|2 |v0(0)|2 +
1
2

k∑
j=0

|vn( j)|2 |vn(0)|2

+
1
2

k∑
j=0

 n∑
ℓ=0

|vℓ( j)|2 |vℓ(0)|2


+
1
2

k∑
j=1

n−1∑
ℓ=1

|vℓ( j)|2 |vℓ(0)|2


+
1
2

n−1∑
ℓ=1

1
1 − λ2

ℓ

{
pR

0 |vℓ(0)|2 − pL
1 |vℓ(1)|2 − pR

k |vℓ(k)|2

+ pL
k+1 |vℓ(k + 1)|2

}
|vℓ(0)|2

=

k∑
j=0

 n∑
ℓ=0

|vℓ( j)|2 |vℓ(0)|2


+
1
2

n−1∑
ℓ=1

1
1 − λ2

ℓ

{
−pR

k |vℓ(k)|2 + pL
k+1 |vℓ(k + 1)|2

}
|vℓ(0)|2

= F̄C
n (k)

+
1
2

n−1∑
ℓ=1

1
1 − λ2

ℓ

{
−pR

k |vℓ(k)|2 + pL
k+1 |vℓ(k + 1)|2

}
|vℓ(0)|2 .

4. Scaling limit

Let F̄ be the distribution function of the random variable
X̄. We assume that

lim
n→∞

P
(

X̄C
n

n
≤ x

)
= F̄(x) (1)

for all points x at which F̄ is continuous. Hereafter we
assume F̄ is continuous at x (0 ≤ x ≤ 1). Remark that from
the definition, Eq. (1) means that

lim
n→∞

F̄C
n (nx) = lim

n→∞
F̄C

n (⌊nx⌋)

= lim
n→∞

⌊nx⌋∑
j=0

 n∑
ℓ=0

|vℓ( j)|2 |vℓ(0)|2
 = F̄(x), (2)

where ⌊a⌋ denotes the biggest integer which is not greater
than a.

From Eq. (2) and the relation

P
(

X̄D
n

n
≤ x

)
= F̄D

n (nx) = F̄D
n (⌊nx⌋)

= F̄C
n (⌊nx⌋)

+
1
2

n−1∑
ℓ=1

1
1 − λ2

ℓ

{
− pR

⌊nx⌋ |vℓ(⌊nx⌋)|2

+ pL
⌊nx⌋+1 |vℓ(⌊nx⌋ + 1)|2

}
|vℓ(0)|2 ,

if we can prove

lim
n→∞

n−1∑
ℓ=1

1
1 − λ2

ℓ

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

= lim
n→∞

n−1∑
ℓ=1

1
1 − λ2

ℓ

|vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 = 0, (3)

then we can conclude

lim
n→∞

P
(

X̄D
n

n
≤ x

)
= F̄(x),

for all points at which F̄ is continuous.
Now we show an example for the convergence. That is

lim supn→∞ λ1 < 1 case. By the definition, we obtain

0 ≤
⌊nx⌋∑
j=0

n−1∑
ℓ=1

|vℓ( j)|2 |vℓ(0)|2
 ≤ F̄C

n (⌊nx⌋)
n→∞
−−−−→ F̄(x).

Also we have

0 ≤
⌊nx⌋+1∑

j=0

n−1∑
ℓ=1

|vℓ( j)|2 |vℓ(0)|2
 ≤ F̄C

n

(⌊
n
(
x +

1
n

)⌋)
n→∞
−−−−→ F̄(x),

from continuity of F̄ at x. These mean that

lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

= lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2 = 0. (4)
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Therefore combining with Eq. (4), we obtain Eq. (3) as fol-
lows:

lim sup
n→∞

n−1∑
ℓ=1

1
1 − λ2

ℓ

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

≤ lim sup
n→∞

1
1 − λ2

1

n−1∑
ℓ=1

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

≤
1

1 − lim supn→∞ λ
2
1

× lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋)|2 |vℓ(0)|2

= 0,

lim sup
n→∞

n−1∑
ℓ=1

1
1 − λ2

ℓ

|vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2

≤ lim sup
n→∞

1
1 − λ2

1

n−1∑
ℓ=1

|vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2

≤
1

1 − lim supn→∞ λ
2
1

× lim
n→∞

n−1∑
ℓ=1

|vℓ(⌊nx⌋ + 1)|2 |vℓ(0)|2

= 0.
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