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Abstract—There are many kinds of conflict in the
world, and they are very complex and controversial. To
analyze conflicts, the methodology of games can be em-
ployed. In this paper, we model a negotiation process
between prefectures over water resource development by
the evolutionary game theory. We consider the upstream
prefecture consists of two sections. We propose a model
that they play games with the downstream prefecture and
change their strategies depending not only on their own
payoffs but also on total payoffs of the upstream prefecture.

1. Introduction

Because of great import of water for sustaining mod-
ern day civilizations, water resource development prob-
lems tend to be very complex and controversial. The wa-
ter resource development problem is a matter to adjust the
supply-demand gap between the prefecture which can ob-
tain plentiful water resources easily and the prefecture not
so [1]. We call the former the supply prefecture and the
latter the demand prefecture. When we try to adjust the
supply-demand gap of water resources between these pre-
fectures, the conflict which is caused by differences of their
desires arises necessarily. The water resource development
problem in the real world has various characteristics in each
area.

To model a water resource development problem, the
technique of the game theory can be employed. For ex-
ample, the Lake Biwa conflict in Japan is analyzed by the
hypergame [1]. The main purpose of this paper is to ab-
stract common conflict patterns found in the water resource
development problem and model the problem by the evo-
lutionary game. In the evolutionary game, a player selects
a strategy by trial and error, and dynamic characteristics of
the selection process are described by replicator dynamics
[2, 3]. By using the evolutionary game, we can discuss how
players’ decisions change. The water resource develop-
ment problem is modeled as a game between an upstream
prefecture and a downstream prefecture. We consider that
the upstream prefecture consists of two sections that make
decisions on regional developments and water allocations
to the downstream prefecture, respectively. We propose a
model that each section plays a game with the downstream
prefecture and changes its strategy depending not only on
its own payoffs but also on total payoffs of the upstream
prefecture. We show a simplified simulation of the pro-
posed model.

2. Preliminaries
An evolutionary game in an n-population model is de-

fined as an interaction of n populations. We suppose that
there exist n large populations P1, P2, . . . , Pn. Repeatedly,
players are randomly drawn from these populations to play
game — one player from each population [2]. This sec-
tion gives brief introductions to n-population evolutionary
games [2, 3].

In this paper, we use the following notations:

• N = {1, 2, . . . , n} : an index set of populations;
• Φi = {1, 2, . . . ,mi} : a set of pure strategies of Pi (i ∈

N);
• Δi : a set of population states of Pi,
• si = (s1

i , . . . , s
mi
i )T ∈ Δi : a population state of Pi,

where sk
i is the proportion of players with a pure strat-

egy k ∈ Φi.
• Δ = ×i∈NΔi : sets of population state combinations;
• Ri : Δ→ R : player i’s payoff function; and
• ek

l : the l-dimensional unit vector such that the kth el-
ement equals 1.

As a special case, we consider a two-population game,
and write players’ payoff function as payoff matrices. Let
A = (ai j) and B = (bi j) be P1’s and P2’s payoff ma-
trix, respectively. For k ∈ Φ1 and h ∈ Φ2, suppose that
akh = R1(ek

m1
, eh

m2
) and bhk = R2(eh

m2
, ek

m1
). Hence, if player

of P1 adopts s1 ∈ Δ1 and player of P2 adopts s2 ∈ Δ2, then
the payoffwhich the former (resp. the latter) earns is sT

1 As2
(resp. sT

2 Bs1).
Replicator dynamics is one of key concepts of evolu-

tionary game theory. It describes the evolution of distri-
bution of strategies in populations. In each population,
suppose that the rate of increase of players with a strat-
egy k is expressed as the difference between the payoffs
which a player with a strategy k earns and the average pay-
off the population earns. Hence, replicator dynamics of the
n-population model is formulated as follows:

ṡk
i = sk

i
[
Ri(emi , s−i) − Ri(s)

]
, (1)

where s−i = (s1, . . . , si−1, si+1, . . . , sn) is the population
state combination results from s by removing the popula-
tion state si. If a player with a pure strategy k earns more
(resp. less) payoff than the average payoff, the proportion
of players with a strategy k will increase (resp. decrease).
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3. Model
We consider a water development problem for two pre-

fectures such as the Lake Biwa conflict in Japan [1]. In the
same river basin, the upstream prefecture is the supplier
and the downstream prefecture is demander. The upstream
prefecture allocates water to the downstream prefecture to
replenish the shortfall of the downstream prefecture’s water
resources. In this situation, desires of prefectures conflict
with each other. So, it is necessary to adjust the overall
interests to resolve that problem.

We have the following assumptions:
1. The upstream prefecture:
• is less developed than the downstream prefecture and

is eager to implement regional development,
• is unwilling to allocate water to the downstream pre-

fecture because drawdown of water caused by the al-
location may damage such as facilities,
• can allocate water if the allocation helps with imple-

mentation of regional development.

2. The downstream prefecture:
• desires to use sufficient water with no responsibility,
• considers that shortage of water resources interferes

with daily life,
• has the fund for purchase of water from the upstream

prefecture,
• saves water in order to reduce financial burdens to get

water and shows its attitude to work toward saving wa-
ter by investment in facilities.

The upstream prefecture makes a two decisions, “whether
implement regional development” and “whether allocate
water to the downstream.” They are decisions on finan-
cial resources and water resources, respectively. So, we
consider the upstream prefecture consists of two sections
that make decisions on regional developments and water
allocations to the downstream prefecture, respectively. We
call them “Water allocation Section (WS)” and “Develop-
ment Section (DS),” respectively. We call the downstream
prefecture “D.” Thus, this problem is modeled as a three-
population game among WS, DS, and D as shown in Fig.
1.

WS and DS play the game with D separately. How-
ever, these two sections are governed by “Governor (Gov)”
which considers total payoffs of the upstream prefecture.
Gov attempts to govern these sections by giving payoffs.
That is, WS and DS earn payoffs by Gov while playing the
game with D.

3.1. Players and Their Strategies

In this three-population game among WS, DS, and D,
WS and DS have two strategies. WS’s strategies are “Don’t
allocate water to D (Don’t A.W.)” and “Allocate water to D
(A.W.).” DS’s strategies are “Don’t implement regional de-
velopment (Don’t Dev.)” and “Implement regional devel-
opment (Dev.).” On the other hand, D has two funds: that

Governor

The Downstream Prefecture

Development SectionWater allocation
      Section

The Upstream PrefectureThe Upstream Prefecture

Give payoffsGive payoffs

: Dev.

:Don’t Dev.

:A.W.

:Don’t A.W.

:Save Water
:P.W.
:Do-nothing{ { {

3s 2

2s1w

1s1w 1s 2
2s 2

1s1d
2s1d

Figure 1: Relationships among populations.

for water saving equipment and that for purchase of wa-
ter from the upstream prefecture. The total amount of the
funds is limited. So, D has three strategies related to how
its budget is used for the funds: “Do-nothing,” “Purchase
of water (P.W.),” and “Save water (S.W.).”

In this game, population states are described as follows:
1. The upstream prefecture:

s1w = [s1
1w, s

2
1w]T : WS’s population state,

s1d = [s1
1d, s

2
1d]T : DS’s population state.

2. The downstream prefecture:
s2 = [s1

2, s
2
2, s

3
2]T : D’s population state.

Then, when WS and DS play the game with D separately,
payoff functions of the populations are given as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R1w(s1w, s1d, s2) = sT
1wAws2 : WS’s payoff,

R1d(s1w, s1d, s2) = sT
1dAd s2 : DS’s payoff, (2)

R2(s1w, s1d, s2) = sT
2 Bws1w + sT

2 Bd s1d : D’s payoff.

Aw and Ad are WS’s and DS’s payoff matrices in the game
with D, respectively. Bw and Bd are D’s payoff matrices in
the game with WS and DS, respectively.

3.2. The PayoffGiven by Governor

When WS and DS play the game with D separately, these
sections earn payoffs defined by Eq. (2). In this game, the
purposes of WS and DS are maximization of their own pay-
offs. However, they may not equal the total payoff of the
upstream prefecture. WS can allocate water to D if D uses
a large amount of its budget as the fund for purchase of
water and DS can use it for the implementation of regional
development of the upstream prefecture, that is, if DS can
earn more payoffs than losses of WS’s payoffs which made
by the allocation. Then, we consider that Gov which has
a certain policy governs WS and DS by giving payoffs to
each section. We define the given payoffs as follows:
{

fw(s1w, s1d, s2) : the given payoff to WS,
fd(s1w, s1d, s2) : the given payoff to DS.

When Gov gives these payoffs, each section plays a game
with D and changes its strategy depending not only on its
own payoffs but also on a policy of Gov as total payoffs of
the upstream prefecture. Introducing the payoffs given by
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Table 1: Payoff matrix C.
WS\DS Don’t Dev. Dev.

Don’t A.W. c11 c12

A.W. c21 c22

Gov into the payoff functions of populations, we modify
Eq. (2) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

R1w(s1w, s1d, s2) = sT
1wAws2 + fw(s1w, s1d, s2),

R1d(s1w, s1d, s2) = sT
1dAd s2 + fd(s1w, s1d, s2),

R2(s1w, s1d, s2) = sT
2 Bws1w + sT

2 Bds1d.
(3)

In this paper, we consider that Gov has a certain pol-
icy to combination of strategies of WS and DS, and give
the payoff which depends on the policy to each section.
We define a payoff matrix C which characterize the Gov’s
policy as show in Table 1. An order of elements of ma-
trix C depends on the Gov’s policy. When Gov has a
policy which gives priority to the implementation of re-
gional development over the water allocation, the order is
c22 > c12 > c21 > c11. When Gov has a policy which al-
locates water to D in order to gain fund from D and use
the fund to implement regional development, the order is
c22 > c21 > c12 > c11. We set the given payoffs fw and fd
determined by the matrix C as follows:{

fw(s1w, s1d, s2) = sT
1wCsd1,

fd(s1w, s1d, s2) = sT
1dCT sw1.

(4)

Note that
∑

si
1w =

∑
si

1d =
∑

si
2 = 1. From Eq.(1),

replicator dynamics of this model is formulated as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṡ2
1w = s2

1w
{
(e2T

2 − sT
1w)(Aws2 +Cs1d)

}
,

ṡ2
1d = s2

1d
{
(e2T

2 − sT
1d)(Ad s2 + CT s1w)

}
,

ṡ2
2 = s2

2
{
(e2T

3 − sT
2 )(Bws1w + Bds1d)

}
,

ṡ3
2 = s3

2
{
(e3T

3 − sT
2 )(Bws1w + Bds1d)

}
.

(5)

4. Simulation

In this section, we fix payoff matrices Aw, Ad, Bw, and
Bd as follows:

Aw =

[
0 5 2
−5 2 −1

]
, Ad =

[ −1 2 1
3 6 4

]
, (6)

BT
w =

[ −4 −5 −2
5 7 4

]
, BT

d =

[
3 −1 2
−1 2 0

]
. (7)

These matrices are set based on the following assumptions
[1, 4, 5]:
• WS does not want to allocate much water to D.
• Since DS’s mission is the implementation of regional

development, DS earns more payoffs if D’s fund for
purchase of water increases.
• If WS allocates much water, D uses a large amount of

its budget as the fund for purchase of water, otherwise
it does as the fund for water saving equipment.
• It is undesirable for D that DS pays much attention to

implementation of regional development. However, D
expects that DS uses D’s fund for purchase of water to
implement DS’s regional development.

We consider the following four cases that Gov has different
policies and the matrix C is set for the each policy.

(Case 0) Don’t intervene (C = O).

(Case 1) Give priority to the implementation of develop-
ment over the water allocation to D. The order of ele-
ments of the matrix C is c22 > c21 > c12 > c11.

(Case 2) Give the same priority to the implementation of
development and the water allocation to D. The order
of elements of the matrix C is c22 > c12 = c21 > c11.

(Case 3) Give priority to the water allocation to D over
the implementation of development. The order of ele-
ments of the matrix C is c22 > c12 > c21 > c11.
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Figure 2: Example of transition behavior (Case 0).
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Figure 3: Example of transition behavior (Case 1).
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Figure 4: Example of transition behavior (Case 2).
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Figure 5: Example of transition behavior (Case 3).
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In this section, we show that how the stability of equilib-
rium points changes according to Gov’s policies. Figures
2–5 show examples of a transition behavior of these four
cases, where the initial state is s2

1w = 0.5, s2
1d = 0.5, s2

2 =

0.3, s3
2 = 0.3. As shown in Figs. 2–5, the proportion of

players with a strategy “Dev.” s2
1d converges to s2

1d = 1
in all cases. Then, Figs. 6–9 show phase portraits except
s2

1d . In Cases 0 and 1, there exists a unique asymptoti-
cally stable equilibrium point p0,1. Thus, all orbits start-
ing from interior converge to population state combination
p0,1: s2

1w = 0, s2
2 = 0, s3

2 = 1, which is non-cooperative
equilibrium. In Case 3, on the other hand, there exists a
unique asymptotically stable equilibrium point p2. Thus,
all orbits starting from interior converge to population state
combination p2: s2

1w = 1, s2
2 = 1, s3

2 = 0, which is cooper-
ative equilibrium. In Case 2, there exist two non-isolated
equilibrium points lP.W. and lS .W.. All orbits starting from in-
terior converge to either population state combination lP.W.

or lS .W. depending on the initial state. In Fig. 8, when the
proportion of players with a strategy “W.A.” s2

1w converges
to more (resp. less) than 1.77, orbits converge to lP.W. (resp.
lS .W.).

As above, the Gov’s policy affects strategies of each pop-
ulation, i.e., population states converge to a cooperative
state when Gov has a cooperative policy for D, and popu-
lation states converge to a non-cooperative state when Gov
has a non-cooperative policy.

5. Conclusions

In this paper, we modeled a negotiation process between
prefectures over water resource development by the evo-
lutionary game theory. We considered the upstream pre-
fecture consists of two sections. We proposed a model
that they play games with the downstream prefecture and
change their strategies depending not only on their own
payoffs but also on total payoffs of the upstream prefecture.
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Figure 6: Phase portrait of Case 0.
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Figure 7: Phase portrait of Case 1.
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Figure 8: Phase portrait of Case 2.
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