
Nonlinear Vibration Property of Local Resonators
in Dynamics of an Acoustic Metamaterial

Naoki Higashiyama†, Yusuke Doi† and Akihiro Nakatani†

†Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, 565-0871 Osaka, Japan

Email: naoki.higashiyama@ams.eng.osaka-u.ac.jp, doi@ams.eng.osaka-u.ac.jp, nakatani@ams.eng.osaka-u.ac.jp

Abstract—Nonlinear dynamics of local resonators of an
acoustic metamaterial is investigated. The fully nonlin-
ear formulation is performed, and the asymptotic analysis
of equations of motion is performed in weakly nonlinear
dynamics. Both theoretical equations are verified numer-
ically, and it is found a good agreement of them. Then,
numerical study is performed in detail in weakly nonlinear
dynamics. It is found that DC component and vibrations
with local resonance frequency and twice higher frequency
than an eigen frequency arise in local resonators. More-
over, this local resonance leads to quasi-periodic oscillation
of local resonators.

1. Introduction

In recent years, acoustic metamaterials or artificial pe-
riodic structures have attracted great attention of many re-
searchers. Local resonator, which has been introduced by
Liu. et. al.[1], is often employed as unit structures. Many
researchers have confirmed numerically and experimen-
tally that artificial unit structures enable materials to have
newly dynamical characteristics such as negative effective
mass density[2] and negative effective bulk modulus[3]
around frequencies of local resonance. Huang and Sun
have proposed a 1D mechanical model with local res-
onators, which has extreme Young’s modulus[4]. Its unit
structure consists of two local resonators which act external
force on mass points in the oblique direction to that of mo-
tion of mass points (i.e., wave propagating). Owing to this
geometrical constraint, effects of local resonators on wave
propagation becomes anharmonic with respect to wave am-
plitude.

It is known that nonlinear interactions generally cause
complex dynamics; for example, subharmonic/high-
harmonic resonance, unstabilization and chaotic behav-
ior, and, especially in the case that the system has dis-
crete structure, intrinsic localized modes[5]. In addi-
tion, by using analogy of acoustic metamaterials, research
developments of mechanical metamaterials[6] or seismic
metamaterials[7] for controlling various types of waves
have been accelerated recently. Thus, it is more impor-
tant to understand nonlinear dynamical property of periodic
structures like acoustic metamaterials.

In this study, we construct a mechanical model based on
Huang and Sun’s concept and focus on the nonlinear dy-

namics of local resonators by means of numerical simula-
tion and asymptotic analysis.

2. Model

Figure 1: A unit structure.

We consider a periodic structure which is constructed by
combiningN(= 50) unit structures alongx-axis, as shown
in Figure 1. A unit structure consists of a mass point M1,
an elastic spring K1, and two “local resonators.” A local
resonator consists of a mass point M2 and an elastic spring
K2, and five massless rigid bars. A size of unit structure
without external force isL and D in x- and y- direction,
respectively. Variablesu1, v2i , andv1i (i = x, y) represent
displacements of M1, M2, and a massless connecting point
which joints rigid bars and K2, respectively.ζ is the angle
betweenx-axis and a rigid bar. A subscriptionn of each
variables is a unit number. Owing to the symmetry of unit
structure, M1 is allowed to move only inx-direction. M2

and K2 are supported by a vertical rigid bar so that motion
of M2 is restricted in the center of unit structure. Therefore,
v(n)

1x andv(n)
2x are represented in terms ofu(n)

1 andu(n+1)
1 ,

v(n)
1x = v(n)

2x =
u(n)

1 + u(n+1)
1

2
. (1)

We ignore the effects of friction by assuming that friction
is negligible small. We ignore the effect of gravity.

Equations of motion of M1 and M2 are given as Eq. (2)
and Eq. (3), respectively,

m1
d2u(n)

1

dt2
= k1(u(n+1)

1 − 2u(n)
1 + u(n−1)

1 )

+
k2(v(n)

2y − v(n)
1y )

tanζ(n)
−

k2(v(n−1)
2y − v(n−1)

1y )

tanζ(n−1)
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−m2

2

d2u(n−1)
1

dt2
+ 2

d2u(n)
1

dt2
+

d2u(n+1)
1

dt2

 , (2)

m2

d2v(n)
2y

dt2
= −k2

(
v(n)

2y − v(n)
1y

)
, (3)

wherev(n)
1y and tanζ(n) are

v(n)
1y = −

D
2
+

√√√(D
2

)2

− L
u(n+1)

1 − u(n)
1

2
−

u(n+1)
1 − u(n)

1

2

2

,

(4)

tanζ(n) =
2v(n)

1y + D

u(n+1)
1 − u(n)

1 + L
. (5)

Eqs. (2) and (3) can be nondimensionalized by intro-
ducing nondimensional parameters as follows; mass ratio
θ = m2/m1, spring constant ratioδ = k2/k1, aspect ra-
tio of a unit structureµ′ = L/D, and angular frequency
ratio η = ω/ω0, and new time scaleT∗ = ω0t. Here,
ω0 =

√
k2/m2 is the local resonance frequency. In the fol-

lowing, ¯(·) represents terms nondimensionalized byL.
By using Taylor expansions of Eqs. (2) and (3) in terms

of u(n)
1 andu(n+1)

1 , it’s found that nonlinear terms are repre-
sented as both of odd- and even-order terms ofu(n+1)

1 − u(n)
1

multiplied by functions ofµ′. This indicates that the non-
linearity of mechanical model depends on difference of
neighboring displacement of unit structure and its aspect
ratioµ′.

By linearizing equations of motions, we obtain the dis-
persion relation of mechanical model,

{1+ θ(cosξ + 1)} η4 + 2
θ

δ
(1− cosξ)

−
{

1+ θ(cosξ + 1)+ θ

(
2
δ
+ µ′2

)
(1− cosξ)

}
η2 = 0, (6)

where ξ = q/L and q is a wavenumber. According to
Eq. (6), there is a band gap up toη = 1, i.e., a local res-
onance frequancy[4].

2.1. Numerical calculation and results

In order to investigate the dynamical properties of me-
chanical model, we perform numerical calculations of free
vibration of the system. Nondimentional parameters are
selected as (θ, δ, µ′) = (2.0,0.5,2.0). Numerical integration
is performed by the 4th order Runge-Kutta method until
T∗ = 200 and timestep of that is∆T∗ = 10−4. The initial
displacement is assigned to M1 and M2 as,

ū(n)
1 (0) = (−1)nĀ, v̄(n)

2 (0) =
µ′

1− η̃2
Ā, (7)

which is one of normal modes withξ = π found in the lin-
earized equations of motion under the periodic boundary
condition,u(N+1)

1 ≡ u(1)
1 . Here,η̃ is the largest eigen angu-

lar frequency derived from Eq. (6) (in this case, ˜η ≈ 5.7).

Figure 2 shows the temporal evolution of displacements
of M1 and M2 at the positionsn = 23,24, · · · ,27, where
Ā = 0.001 (the inset in Fig.2(b) is temporal evolution of
displacement of M2 at the positionn = 25 in T∗ = 0− 50).
The results of spectral analysis of M1 and M2 at the posi-
tion n = 25 in the same case of that in Fig.2 are shown in
Fig.3.
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Figure 2: Temporal evolution of displacements(Ā = 0.001).
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Figure 3: Results of spectral analysis (Ā = 0.001).

It is found that as shown in Fig.2(a) and Fig.3(a), M1

oscillates with constant amplitude and single frequency, on
the other hand, as shown in Fig.2(b) and Fig.3(b), the vibra-
tion amplitude of M2 varies and oscillations atη = 0 (DC
component),η ≈ 1.0, andη ≈ 2η̃ are excited. It should be
noted that each excited oscillation except the eigen vibra-
tion is same phase and amplitude at all positionn, and that
each center of vibration of M2 shifts in the direction com-
pressing K2 (that is, DC component is negative). Then,
Fig.4 shows the frequency profile with various eigen oscil-
lation ampliudesĀ under the same conditions of Fig.2.
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Figure 4: Frequency profile vs.̄A.

Fig.4 indicates that though large eigen frequency shift
cannot be seen in the region of̄A smaller than 10−2, eigen
freuquency becomes higher as̄A increases in the region of
Ā larger than 10−2. In this region, vibrations of both of M1
and M2 are no longer stable.

2.2. Asymptotic analysis

In the regionĀ ≤ 10−2, that corresponds to the weakly
nonlinear region, we use the ansatz of displacements of M1

and M2,

ū(n)
1 = εũ

(n)
1 +ε

2(δu(n)
1 )+O(ε3), v̄(n)

2y = εṽ
(n)
2y+ε

2(δv̄(n)
2y )+O(ε3),

(8)
where|ε| ≪ 1. By substituting Eqs.(8) into Eqs. (2) and (3)
and assembling terms atO(ε) andO(ε2) leads to Eqs. (9)
and (10),

¨̃u(n)
1 =

(
θ

δ
+
θµ′

2

) (
ũ(n+1)

1 − 2ũ(n)
1 + ũ(n−1)

1

)
(9)

+θµ′
(
ṽ(n)

2y − ṽ(n−1)
2y

)
− θ

2

(
¨̃u(n−1)

1 + 2¨̃u(n)
1 +

¨̃u(n+1)
1

)
,

¨̃v(n)
2y = −ṽ(n)

2y −
µ′

2

(
ũ(n+1)

1 − ũ(n)
1

)
, (10)

and Eqs. (11) and (12),

δ̈ū
(n)
1 =

(
θ

δ
+
θµ′

2

) (
δū(n+1)

1 − 2δū(n)
1 + δū

(n−1)
1

)
+θµ′

(
δv̄(n)

2y − δv̄
(n−1)
2y

)
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(
µ′2 + 1

)
×
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ṽ(n)

2y

(
ũ(n+1)

1 − ũ(n)
1

)
− ṽ(n−1)

2y

(
ũ(n)

1 − ũ(n−1)
1

)}
+

3
4
θ
(
µ′2 + 1

) {(
ũ(n+1)

1 − ũ(n)
1

)2 −
(
ũ(n)

1 − ũ(n−1)
1

)2
}

− θ
2

(
δ̈ū

(n−1)
1 + 2δ̈ū

(n)
1 + δ̈ū

(n+1)
1

)
, (11)

δ̈v̄
(n)
2y = −δv̄(n)

2y −
µ′

2

(
δū(n+1)

1 − δū(n)
1

)
−1

4

(
µ′2 + 1

) (
ũ(n+1)

1 − ũ(n)
1

)2
, (12)

where ¨(·) ≡ d2/dT∗2. Since Eqs. (9) and (10) are identi-
fied with linearlized equations of motion, ˜u(n)

1 and ṽ(n)
2y are

obtained as follow,

ũ(n)
1 = Ān cos(ηT∗), ṽ(n)

2y =
µ′

1− η2
Ān cos(ηT∗), (13)

whereĀn = Ācos(nξ), Ā is constant, and the relationship
betweenξ andη is represented as Eq. (6).

In order to compare the solution of Eq. (9)-(12) with that
of Eqs. (2) and (3), we perform numerical calculations of
free vibrations of the system for both formulations. The
same numerical calculation method and conditions of Sec-
tion 2.1 are used, and some eigen scillation patterns are
selected as initial displacements. One of the results of tem-
poral evolution at the positionn = 25 initial displacement
pattern are shown in Fig.5 and Fig.6, respectively. Here,
max(Ān) = 0.001.
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Figure 5: Initial displacement pattern.
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Figure 6: Comparison of temporal evolution. (a),(b): The
line of apploximate solution (green dashed line) overlaps
the line of numerical solution (blue solid line) considerably.
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It is found that as shown in Fig.6, the ansatz (in
Fig.6, “Approximate Solution”) agrees with the solution of
Eqs. (2) and (3)(in Fig.6, “Numeical Solution”). The re-
sults at other position or these with other initial displace-
ments also agree with the solutions. Therefore, dynamics
in weakly nonlinear region can be represented well by the
ansatz Eq. (8) and its evolution equations Eqs. (9) and (12).

By substitutingξ = π (which is the same normal mode
applied to M1 and M2 in the case of Fig.2) into Eq. (13),
both of the third and forth term on the right-hand side
of Eq. (11) are eliminated, which indicates that Eq. (11)
is identical with Eq. (9). Thus, by the assumption that
δū(n)

1 (0) = 0, no perturbation of M1 is caused in the re-
gion Ā ≤ 10−2, i.e. δū(n)

1 (T∗) = 0. Insertingδū(n)
1 (T∗) = 0

into Eq. (12) leads to Eq. (14),

δ̈v̄
(n)
2y = −δv̄

(n)
2y −

1
2

(
µ′2 + 1

)
Ā2 {1− cos(2ηlT

∗)} , (14)

whereηl is one of the frequencies obtained by substitut-
ing ξ = π into Eq. (6). Therefore, the solution

(
δv̄(n)

2y

)
sol

is
obtained,

(
δv̄(n)

2y

)
sol
=

(µ′2 + 1)(2η2
l − 1)

4η2
l − 1

Ā2 cos(T∗)

+
µ′2 + 1

2(4η2
l − 1)

Ā2 cos(2ηlT
∗) − 1

2

(
µ′2 + 1

)
Ā2.

(15)

This result agrees with the results of spectral analy-
sis(Fig.3) which shows that DC component and oscillations
at η = 1 and twice as high frequency as eigen frequencyηl

of local resonators are excited. According to Eq. (15), it is
found that in the case ofξ = π, i.e., the eigen oscillation
with minimum wavelengths, the amount of DC component
(the third term on the right-hand side of Eq. (15)) depends
only on aspect ratioµ′ whereas both of amplitude of vibra-
tion atη = 1 and that atη = 2ηl depend on not onlyµ′ but
eigen frequencyηl .

It should be noted that in the case ofξ = π, oscillation at
the local resonance frequency (η = 1) is excited according
to Eq. (15). If the same nondimensional parameters are
selected, we obtainηl = (5 ±

√
41)/2 (the higher one is

η̃), which are irrational numbers. Thus, the frequency ratio
of ηl to local resonance frequency is irrational so that M2

vibrates quasi-periodically[8].

3. Conclusion

We constructed a mechanical model based on an acous-
tic metamaterial consisting of local resonators which inter-
act nonlinearly with propagating waves; and investigated
numerically dynamics of free vibration under the periodic
boundary condition. The results show that in the region
of vibration amplitudeĀ smaller than 10−2, only exitation
of some vibrations of local resonators occurs, on the other

hand, that in the region of̄A larger than 10−2, eigen fre-
quency shift occurs. Then, we performed asymptotic anal-
ysis in weakly nonlinear region under the periodic bound-
ary condition, and confirmed that the ansatz can represent
dynamics well. Moreover, we found that in the case of
ξ = π, vibrations of local resonators with at local resonance
frequency and twice as high one as the eigen frequency, and
DC component of which the amount only depends on the
aspect ratioµ′ are excited because of the nonlinearity. As
the ratio of some eigen frequencies of mechanical model to
local resonance frequency is irrational, local resonators will
vibrate quasi-periodically in case of some normal modes.
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