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Abstract—Nonlinear dynamics of local resonators of amamics of local resonators by means of numerical simula-
acoustic metamaterial is investigated. The fully nonlintion and asymptotic analysis.
ear formulation is performed, and the asymptotic analysis
of equations of motion is performed in weakly nonlineas n1odel
dynamics. Both theoretical equations are verified numer-
ically, and it is found a good agreement of them. Then,
numerical study is performed in detail in weakly nonlinear
dynamics. It is found that DC component and vibrations
with local resonance frequency and twice higher frequency
than an eigen frequency arise in local resonators. More-
over, this local resonance leads to quasi-periodic oscillation
of local resonators.

1. Introduction

In recent years, acoustic metamaterials or artificial pe- Figure 1: A unit structure.

riodic structures have attracted great attention of many re- We consider a periodic structure which is constructed by

searchers. Local resonator, which has been introduced E’meiningN(z 50) unit structures along-axis, as shown

Liu. et. al[1], is often employed as unit structures. Many; Figure 1. A unit structure consists of a mass point M

researchers have confirmed numerically and experimth elastic spring K and two “local resonators.” A local
tally that artificial unit structures enable materials to hav?esonator consists of a mass poing dhd an elaétic spring
newly dyna_mlcal charactens_tlcs su_ch as negativectve K>, and five massless rigid bars. A size of unit structure
mass density[2] and negativefective bulk modulus[3] without external force id. and D in x- andy- direction,

ﬁround frequegmesllgf Iocarl] re;oTanC((aj. nga;]nglj anld S?'é]spectively. Variablesy, vy, andvy; (i = X,y) represent
ave propcr)]seh ha mec a\l(mca ,mo ed \IN't 4 ocla re_%isplacements of M M5, and a massless connecting point

onators, w Ich has extreme Young's mo u'us[ ] fts UNshich joints rigid bars and K respectively. is the angle

structure consists of two local resonators which act externgl,, o nv_axis and a rigid bar. A subscriptiamof each

fprce on mass p_oints_ in the oblique dire(_:tion to that of MO%ariables is a unit number. Owing to the symmetry of unit
tion of mass points (i.e., wave propagating). Owing to th'§tructure, M is allowed to move only incdirection.

geometrigal constraint fiects of Ic.)callresonators ON Wave ;4 K, are supported by a vertical rigid bar so that motion
pr.opagatlon becomes anharmonic with respect to wave ai5¥ M, is restricted in the center of unit structure. Therefore,
plitude. _ _ _ v andvy) are represented in terms @’ andu{™™",

It is known that nonlinear interactions generally cause
complex dynamics; for example, subharmghigh- u® 4y
harmonic resonance, unstabilization and chaotic behav- V(lr)? =V(2':() = % 1)
ior, and, especially in the case that the system has dis-
crete structure, intrinsic localized modes[5]. In addiWVe ignore the fects of friction by assuming that friction
tion, by using analogy of acoustic metamaterials, researéhinegligible small. We ignore thefect of gravity.
developments of mechanical metamaterials[6] or seismic Equations of motion of Mand M, are given as Eq. (2)
metamaterials[7] for controlling various types of wavesnd Eg. (3), respectively,
have been accelerated recently. Thus, it is more impor-

tant to understand nonlinear dynamical property of periodiqnlﬂ — kl(u(n+l) _ou™ 4 u(n—l))
structures like acoustic metamaterials. dt ! ! !

In this study, we construct a mechanical model based on kz(\é?,) - V(lr;)) kz(\/(zr;,_l) - V(lr;_l))
Huang and Sun’s concept and focus on the nonlinear dy- + tanc® tang(D
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mp (Ul d2u g2 Figure 2 shows the temporal evolution of displacements
Sl a2 t%ae T az '@ of My and M, at the positions1 = 23,24, --,27, where
» () A = 0.001 (the inset in Fig.2(b) is temporal evolution of
dVay Kk (V(n) V(n)) displacement of Mat the positiom = 25inT* = 0 - 50).

™ge T Ty 3) The results of spectral analysis of,Mnd M, at the posi-
tion n = 25 in the same case of that in Fig.2 are shown in
wherev{) and tany® are Fig.3.
gn) D, J(E)z B I_u(n+1) (ln) _( (1n+1) (n)] ’ ”
roo2 2 2 2 @ o2
o ZV(n) +D ‘% 25|
tang'"V = —(n+1) R (5) =
Egs. (2) and (3) can be nondimensionalized by intro- 5]

ducing nondimensional parameters as follows; mass ratio
0 = mp/my, spring constant ratie = ky/k;, aspect ra-
tio of a unit structurew’” = L/D, and angular frequency
ration = w/wp, and new time scal@* = wot. Here,
wo = Vkp/my is the local resonance frequency. In the fol-
lowing, () represents terms nondimensionalized by
?/ using Taylor expansions of Egs. (2) and (3) in terms

ofu andu“J“l it's found that nonlinear terms are repre-
sented as both of odd- and even-order terms Bf) — u{”
multiplied by functions of.’. This indicates that the non-
linearity of mechanical model depends orffelience of 5
neighboring displacement of unit structure and its aspect . o - - o
ratiou’. T

By linearizing equations of motions, we obtain the dis- (b) M.
persion relation of mechanical model,
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P Figure 2: Temporal evolution ofdisplacemew_ts( 0.001).
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where¢é = ¢/L andq is a wavenumber. According to %ﬁf}*:ﬁj 21 5a0° 7 S N
Eq. (6), there is a band gap up#o= 1, i.e., a local res- 2 s Ziom0®
onance frequancy[4]. Lox107 s0e10°
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2.1. Numerical calculation and results
. . . . (@) M. (b) Mz.
In order to investigate the dynamical properties of me-

chanical model, we perform numerical calculations of free
vibration of the system. Nondimentional parameters are
selected a¥¥(6, 1’) = (2.0,0.5,2.0). Numerical integration

is performed by the 4th order Runge-Kutta method unti
T* = 200 and timestep of that iST* = 107, The initial
displacement is assigned to,Mnd M, as,

Figure 3: Results of spectral analys&# 0.001).

It is found that as shown in Fig.2(a) and Fig.3(a); M
oscillates with constant amplitude and single frequency, on
the other hand, as shown in Fig.2(b) and Fig.3(b), the vibra-
tion amplitude of M varies and oscillations at= 0 (DC
- component)p ~ 1.0, andn ~ 277 are excited. It should be
1- ﬁZA, (7)  noted that each excited oscillation except the eigen vibra-

tion is same phase and amplitude at all positipand that
which is one of normal modes with= x found in the lin- each center of vibration of Mshifts in the direction com-
earized equations of motion under the periodic boundagyressing k (that is, DC component is negative). Then,
conditionu(l'\”l) = u(ll). Here,rj'is the largest eigen angu- Fig.4 shows the frequency profile with various eigen oscil-
lar frequency derived from Eq. (6) (in this cagex™5.7). lation ampliudesA under the same conditions of Fig.2.

w0) = (-1rA $(0) =
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Figure 4: Frequency profile VA,

Fig.4 indicates that though large eigen frequency shift

cannot be seen in the region@?fsmaller than 16, eigen

freuquency becomes higher Asncreases in the region of
Alarger than 16%. In this region, vibrations of both of M
and M, are no longer stable.

2.2. Asymptotic analysis

In the regionﬂs 1072, that corresponds to the weakly
nonlinear region, we use the ansatz of displacements,of M
and M,

U = 00 +e2(0u)+0(e%), W) = e¥5)+c2(oviy)+O(e%),

(8)

wherele| < 1. By substituting Egs.(8) into Egs. (2) and (3)
and assembling terms @{(s) and O(¢?) leads to Egs. (9)

and (10),

“ 0 6y

6 = ((_5 +%)(u(l“+l>—2ﬁg”>+ug“>) 9)

(e _ g0y _ 9 gon 60 4 Y

+6/1(v —sz) 2(1 + 20,7 + U3 )

W= - (<”+1> u). (10)

and Egs. (11) and (12),

) (0O onit) o) | o)

sy’ = (6 2)(6u — 250" + o™

+6/1'( \7(“) 6\7(”_1)) + 0(,u’ + 1)
{v(”)( 60D - o) - 0 (@ - o))

+20(u? + 1){(@0 - a0 - (& - i )]

0 (in-1) | o)

3 (00 ).

+ 20Uy + 00Uy

B (5u1”+1) sul)

by -
! ,

where(") = d?/dT*2. Since Egs. (9) and (10) are identi-
fied with linearlized equations of motiou&”*and\ig;) are
obtained as follow,

(12)

i = A, cos@T),

~(n H
W = T (13)
whereA, = Acosfi), A is constant, and the relationship
betweer¢ andp is represented as Eq. (6).

In order to compare the solution of Eq. (9)-(12) with that
of Egs. (2) and (3), we perform numerical calculations of
free vibrations of the system for both formulations. The
same numerical calculation method and conditions of Sec-
tion 2.1 are used, and some eigen scillation patterns are
selected as initial displacements. One of the results of tem-
poral evolution at the position = 25 initial displacement
pattern are shown in Fig.5 and Fig.6, respectively. Here,
max(A,) = 0.001.

1
5 Zos

10 20 0 3
Position

=) o

S
@
=4
&

Amplitude Ratio

Amplitude Ratio

10 20 .30 40 3
Position

(a) M. (b) M.
Figure 5: Initial displacement pattern.
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Figure 6: Comparison of temporal evolution. (a),(b): The
line of apploximate solution (green dashed line) overlaps

(11) the line of numerical solution (blue solid line) considerably.

- 807 -



It is found that as shown in Fig.6, the ansatz (irhand, that in the region oA larger than 107, eigen fre-
Fig.6, “Approximate Solution”) agrees with the solution ofquency shift occurs. Then, we performed asymptotic anal-
Egs. (2) and (3)(in Fig.6, “Numeical Solution”). The re-ysis in weakly nonlinear region under the periodic bound-
sults at other position or these with other initial displaceary condition, and confirmed that the ansatz can represent
ments also agree with the solutions. Therefore, dynamiclynamics well. Moreover, we found that in the case of
in weakly nonlinear region can be represented well by thé = =, vibrations of local resonators with at local resonance
ansatz Eq. (8) and its evolution equations Egs. (9) and (1Z)equency and twice as high one as the eigen frequency, and

By substitutingé = n (which is the same normal mode DC component of which the amount only depends on the
applied to M and M, in the case of Fig.2) into Eq. (13), aspect ratiq’ are excited because of the nonlinearity. As
both of the third and forth term on the right-hand sidehe ratio of some eigen frequencies of mechanical model to
of Eq. (11) are eliminated, which indicates that Eqg. (11)ocal resonance frequency is irrational, local resonators will
is identical with Eq. (9). Thus, by the assumption thavibrate quasi-periodically in case of some normal modes.
60(1”)(0) = 0, no perturbation of Mis caused in the re-
gionA < 102, i.e. su®”(T*) = 0. Insertingst!”(T*) = 0 References
into Eq. (12) leads to Eq. (14),
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3. Conclusion

We constructed a mechanical model based on an acous-
tic metamaterial consisting of local resonators which inter-
act nonlinearly with propagating waves; and investigated
numerically dynamics of free vibration under the periodic
boundary condition. The results show that in the region
of vibration amplitudeA smaller than 1%, only exitation
of some vibrations of local resonators occurs, on the other

- 808 -



	Navigation Page
	Session at a glance

