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Abstract—A discrete-time control system with dynamic
states for stabilizing unknown unstable fixed points of non-
linear systems is introduced. The control method is based
on a discrete-time system which corresponds to an embed-
ded return map derived from the continuous-time dynam-
ics of the nonlinear systems. The discrete-time approach
allows to stabilize unknown unstable fixed points of the re-
turn maps. In this paper, we show that our control method
can stabilize unknown unstable periodic orbits of chaotic
spiking oscillators.

1. Introduction

In this study, we focus on procedures to stabilize an Un-
stable Periodic Orbit (abbr. UPO ) which are embedded
on a chaos attractor. The procedures are called Controlling
Chaos [1]. As is well known, Ott, Grebogi and Yorke (ab.
OGY) have firstly introduced a technique that can stabilize
an UPO embedded in a chaotic attractor through perturba-
tions in system parameters[1]. The OGY method uses a
knowledge of linear approximation near the desired UPO.
Also, Pyragas [2] introduced an useful controlling chaos
method which utilizes an information of delay time, the
method is called Delayed Feedback Control (abbr. DFC).
DFC has advantages such that no preliminary calculation
of the UPO and no linear approximation around the UPO
is required in order to stabilize the UPO.

We provide a design procedure of a controlling circuit
which can stabilize of various periodic solutions based on
UPOs embedded on a chaos system. Our proposed method
effectively performs controlling chaos and has the some
advantage as DFC, that is, no preliminary calculation of
the UPO is required. And our control procedure is sim-
ilar to some nonlinear approach to treat unknown steady
state, washout filter-aided control [3], stability transforma-
tion [4].

In this paper, we use an example of chaos generator in
order to explain the control method. The chaos generator is
a simple chaotic spiking oscillator. Chaotic spiking oscilla-
tors have been studied in many interesting works[5][6], be-
cause these are included in hybrid dynamical systems with
various bifurcation phenomena. We show some theoretical
result for stability analysis.
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Figure 1: An implementation example of the chaos gener-
ator.

2. A simple chaotic spiking oscillator

2.1. Circuit and dynamics

Figure 1 shows a circuit model of the simple chaotic
spiking oscillator, where we consider the case of K = 0
in this section. g1 and g2 are differential voltage-controlled
transconductance amplifiers and their output currents are i1
and i2, respectively, which can be characterized by(

i1
i2

)
=

(
0 g1
−g2 g2

) (
v1
v2

)
(1)

Connecting two capacitors to both output terminal of the
conductance amplifiers, we obtain a two dimensional lin-
ear system. When S is opened, the circuit dynamics is de-
scribed by C1

dv1

dt
C2

dv2

dt

=
(

0 g1
−g2 g2

)(
v1
v2

)
+

(
0
I

)
, (2)

where I is a constant current.
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Using the following dimensionless variables and param-
eters:

τ =
√

g1g2
C1C2

t, x = g2
I v1,

y = g2
I

√
C2g1
C1g2

v2, 2δ =
√

C1g2
C2g1
,

(3)

Equation (2) is transformed into{
ẋ = y,
ẏ = 2δy − x + 1, (4)

where ”·” represents the derivative of τ. We assume the
following parameter condition

0 < δ < 1. (5)

In this case, Equation (7) has unstable complex character-
istic roots δ± jωwhere ω =

√
1 − δ2. The trajectory moves

around the equilibrium point (1, 0) divergently and it must
reach to fourth quadrant from x < 0 and y = 0 as shown
Fig. 2.

In this circuit in Fig. 1, M.M. is a monostable multi-
vibrator which outputs pulse signal to close the switch S
and to open S̄ instantaneously. Two comparators detect the
impulsive switching condition; if v1 < 0 and v2 > 0, then
M.M. is triggered by pair of comparators. During move-
ment of the trajectory around fixed point, the voltage v1 is
stored to CC1. And If v1 < 0 and v2 > 0, the voltage v1
is reset to the inverse voltage −v1 instantaneously holding
continuity property of v2(t), that is,

[v1(t+), v2(t+)]T = [−v1(t), v2(t)]T

for v1(t) < 0 and v2(t) > 0, (6)

where t+ ≡ limε→0{t + ε}.
Because the parameter condition (5), the trajectory must

reach {(v1, v2)|v1 < 0, v2 = 0} when the switchings oc-
cur. Namely, the normalized trajectory must hit {(x, y)|x <
0, y = 0} and jumps from (x(Tn), 0) to (−x(T+n ), 0) as shown
in Fig. 2, where Tn is the n-th switching moments.

Consequently, Eqn. (2) and (6) with the condition (5) are
transformed into{

ẋ = y,
ẏ = 2δy − x + 1, for S = off,

[x(τ+), y(τ+)]T = [−x(τ), 0]T

for x(τ) < 0 and y(τ) = 0,
(0 < δ < 1).

(7)

Now the system is characterized by only one parameter δ.
The right figure of Fig. 2 shows a typical chaotic behaviour
with δ '= 0.11.

The transconductance amplifiers are implemented by
OTAs (LM13700). Realization procedure of differential
voltage-controlled transconductance amplifiers by using
OTAs can be found in literature [7]. The monostable mul-
tivibrator, the comparators and the analog switches are im-
plemented by IC package of 4538, LM339 and LF398, re-
spectively.
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Figure 2: Behavior of Trajectories on the phase space and
a typical chaos attractor. (δ ' 0.11)

2.2. Analysis

The following exact piecewise solution of Eqn. (7) for
S =off is derived.

x(τ) = eδτ
{
{x(0) − 1} cosωτ
+ 1
ω
{y(0) − δx(0) + δ} sinωτ

}
+ 1.

(8)

We focus on a trajectory starting from origin. The tra-
jectory rotates divergently around the equilibrium point
(1, 0) and reaches the switching threshold after 2π

ω
. A

x−coordinate of the reaching point is obtained as −e
2πδ
ω + 1

by substituting x(0) = 0 and τ = 2π
ω

into (8). Here we define
A ≡ e

2πδ
ω > 1 and l ≡ {(x, y)| − 1 < x < 0, y = 0} and con-

sider the case of −A + 1 > −1, that is, the minimum value
of x is grater than −1. In this case, the trajectory starting
from l jumps instantaneously to the symmetric point of the
origin, rotates k−times (k = 1, 2, 3, · · ·) around the equilib-
rium point and it must return to l after 2kπ

ω
. We henceforth

consider the parameter range

1 < A < 2. (9)

If we choice l as Poincaré-section, we can define one
dimensional return map f from l to itself. Letting (x(Tn), 0)
be the starting point, (x(Tn+1), 0) be the return point and
letting any point on l be represented by its x-coordinate, f
is defined by

f : l 7→ l, xn+1 = f (xn), (10)

where we rewrite xn = x(Tn).
Substituting x(0) = −xn and τ = 2kπ

ω
into the solution

(8), we obtain an explicit expression for the function f :

f (xn) =



−A(xn + 1) + 1
for 1

A − 1 < xk ≤ 0,
−A2(xn + 1) + 1

for 1
A2 − 1 < xn ≤

1
A − 1,

...
−Ak(xn + 1) + 1

for 1
Ak − 1 < xn ≤

1
Ak−1 − 1,

...
(k = 1, 2, 3, · · · .)

(11)
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Figure 3: Chaotic return maps. (left: A = 1.8(δ ' 0.09),
right: A→ 2(δ ' 0.11)).

where each borders of piecewise map, Thk =
1
Ak − 1, are

derived by solving 0 = −Ak(Thk + 1) + 1. Typical return
map f are shown in Fig. 3. In this figure, k-th branch from
the right corresponds to a trajectory with a k turn spiral.

From condition (9), since | ∂ f
∂xn
| > 1 is satisfied without

discontinuous points and f (l) ⊂ l is obvious, hence f ex-
hibits chaos. In practice, if 1 < A < 4 is satisfied, the
system (7) behaves chaos rigorously. This paper omits the
proof but it is easy in a similar way to [8].

Let xpk be a k-th fixed point of (10) in descending order
as shown in the left figure of Fig. 3. Note that xpk corre-
sponds to a periodic point of UPO with a k turn spiral of the
continuous system (7). xpk =

1−An

1+An can be obtained by solv-
ing xpk = f (xpk) if it exists. If xpk exists, xpk > −A+1 must
be satisfied as shown Fig. 3. In consequence, the existence
condition of xpk is

1 − Ak

1 + Ak > −A + 1. (12)

3. A controlled CSO to stabilise unknown UPOs

3.1. Circuit and return map

We consider the circuit diagram of the proposed system
which has a sample-and-hold unit as shown in Fig. 1, in
the case of K , 0. A capacitor cC0 stores a voltage vC1(Tn)
at the closing moment of a switch S and holds until next
switching moment Tn+1. If S̄ is closed, a voltage vC1 is
(1−K)v1+KvC0. And if v1 < 0 and v2 > 0, the voltage v1 is
reset to the −vC1(Tn) and vC0(Tn) is copied to the vC1(Tn),
instantaneously. In a similar way to (7), the dynamics of
this circuit is given by

ẋ = y,
ẏ = 2δy − x + 1,
z(τ) = z(T+n ),

for S = off,
(Tn < t ≤ Tn+1) x(τ+)

y(τ+)
z(τ+)

 =
 −{(1 − K)x(τ) + Kz(τ)}

0
(1 − K)x(τ) + Kz(τ)


for x(τ) < 0 and y(τ) = 0,

(0 < δ < 1)

(13)
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Figure 4: Typical shapes of the return map (15). (A=1.88,
(a) K = 0, (b) K = 0.4, (c) K = 0.65, (d) K = 0.8, the black
circle represents stable fixed points.)

where z = g2
I vC0.

Let us consider the behavior of the solution on phase
space. Note that z(Tn+1) = z(T+n ) because of the third row
of (13). At a switching moment Tn−1, the state (x, y) jumps
to (−z(Tn), 0) and the trajectory goes from (−z(Tn), 0). The
trajectory rotates k times around the equilibrium point and
must return to switching threshold. In the meantime, z(τ)
holds z(Tn). At the next switching moment Tn, z(Tn+1) is
given by

z(Tn+1) = z(T+n ) = (1 − K) · x(Tn+1) + K · z(Tn). (14)

By using the map f , x(Tn+1) is represented as x(Tn+1) =
f (z(Tn)). Therefore the following 1-dimensional discreet
time system for state z is obtained.

zn+1 = (1 − K) · f (zn) + K · zn (15)

where we rewrite zn = z(Tn). Now the system dynamics of
(13) is governed by 1-D return map (15) with two parame-
ters A and K. The internal state xn is given by f (zn−1).

Substituting zn = xpk into (15), we obtain zn+1 = xpk be-
cause of xpk = f (xpk). Therefore, it is clear that the return
map (15) has fixed points xpk in the same as (10). That is, if
the parameter K is set to be stable around xpk, then the un-
stable fixed point xpk of (10) can be stabilized without the
location information. Typical shapes of the return map (15)
are shown in Fig. 4. The map as shown in Fig. 4(a) is cor-
responding to the original map (10). The map in Fig. 4(b),
(c) and (d) has 1, 2 and 3 stable fixed point(s), respectively.
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Figure 5: A parameter space.

3.2. Analysis

We consider the stability of the system (15) around the
fixed point xpk. It is given by∣∣∣∣∣∣ ∂zn+1

∂zn

∣∣∣∣∣
zn=xpk

∣∣∣∣∣∣ < 1. (16)

Hence the control gain K to generate a stabilized fixed point
is determined by solving the following inequality:∣∣∣∣∣∣(1 − K)

∂ f (zn)
∂zn

∣∣∣∣∣
zn=xpk

+ K

∣∣∣∣∣∣ < 1. (17)

From (10) and (17), we can derive the condition of K to
stabilize xp f as follows.

Ak − 1
Ak + 1

< K < 1. (18)

In conformity with (12) and (18), we obtain the parameter
region of (A,K) for existing the stable fixed point xpk. It is
represented as

Dk =

{
(A,K)

∣∣∣∣Ak − 1
Ak + 1

< K < 1,

1 − Ak

1 + Ak > −A + 1, 1 < A < 2
} . (19)

From (19), it is noticed that Dk+1 is subset of Dk. It means
that the fixed point xpk must be stable in the parameter re-
gion Dk+1 such as xpk+1 is stable. We define a parameter
region Ik as

Ik = Dk − Dk+1. (20)

Ik is the region such that fixed points (xp1, xp2, · · · , xpk) are
stable. Figure 5 shows the parameter space of (A,K) which
depicts the existence region Ik.

4. Conclusions

We proposed a novel nonlinear system which consists of
a chaotic system and a dynamic controller with instanta-
neous state setting method. The proposed control system

effectively performs to stabilize Unstable Periodic Orbits
embedded on chaos attractor of the chaotic system. The
condition to stabilize Unstable Periodic Orbits was pro-
vided. And we verified some theoretical results in simu-
lations.
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