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Abstract—Energy localized vibrations known as intrin-
sic localized modes or discrete breathers were observed in
a magnetically coupled cantilever array. It has been ex-
perimentally confirmed that the observed ILMs are stable
against small perturbation. In this paper, it is shown that
such stable ILMs can be destabilized by periodically vary-
ing on-site potentials. The destabilized ILM becomes a
traveling ILM under the fixed boundary condition.

1. Introduction
Energy localization is known as intrinsic localized mode

(ILM) or discrete breather (DB) in nonlinear coupled os-
cillators. ILM was discovered in an anharmonic crystal as
a spatially localized and temporally periodic solution [1].
Many theoretical/numerical researches have been reported
for diverse physical systems [2]. Existence of ILM in real
physical systems is now recognized by researchers owing
to experimental studies such as an observation of ILM in
antiferromagnet [3]. In addition to the observation of ILM
in natural structures, ILM was also identified in artificial
structures, for instance, Josephson junction ladders [4], op-
tic wave guides [5], electronic circuits [6, 7], and micro-
cantilever arrays [8].

Intrinsic localized modes in micro-cantilever arrays can
be manipulated by a locally induced impurity [9] and
moved by tuning the frequency of an external excitor [10].
For manipulation method, we proposed “capture and re-
lease manipulation” in which the stability change of ILM
is utilized [11]. In this method, an initially excited ILM
begins to wander in the array when the nonlinear coupling
coefficient is varied in a step-like manner. On the other
hand, a stable ILM can also be destabilized by sinusoidally
changing the nonlinear coupling coefficient, namely, para-
metric excitation [12]. Although the capture and release
manipulation requires that the micro-cantilever array has to
be designed to be close to the bifurcation point at which the
stability of ILM is changed, the parametric excitation can
be applied to any micro-cantilever arrays. Therefore, the
parametric excitation is a useful way to create a traveling
ILM from a static ILM in practical engineering.

In our previous work, a macro-mechanical cantilever ar-
ray with magnetic forces were proposed [13]. The can-
tilever array can be classified into nonlinear Klein-Gordon
(NKG) lattice because a nonlinearity caused by the mag-
netic force only exists in on-site potentials. The coupling
is linear. In this array, ILM was successfully excited and
manipulated by locally adding an impurity. Recently, a
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Figure 1: Configuration of magneto-mechanical lattice

cantilever array having nonlinearity in coupling forces has
been proposed [14]. It is already confirmed that an unstable
ILM can travel the array with keeping its energy concentra-
tion if a small perturbation is applied. This implies that the
magnetically coupled cantilever array permits ILM to move
in the whole array.

In this paper, a possibility of creating a traveling ILM
via parametric resonance is discussed. In next section, a
model describing motions of cantilevers are briefly intro-
duced. Then, a stable ILM, its Floquet multipliers, and
eigenvectors are shown. Finally, unstable regions where
the stable ILM loses stability and begins to move are com-
puted. It is discussed whether the destabilized ILM begins
to travel the array or not via parametric resonance.

2. Magnetically coupled cantilever array

Figure 1 shows a schematic image of a magnetically cou-
pled cantilever array [14]. Each cantilever has a permanent
magnet at the lower end and an electromagnet beneath the
tip which makes the restoring force nonlinear. The other
permanent magnet is attached below the middle of each
beam. The magnetic force between the permanent magnets
causes a nonlinear coupling force between adjacent can-
tilevers. By using the magnetic charge model and nondi-
mensionalization [14, 15], the following equation of mo-
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Table 1: Nondimensionalized parameters of Eq.(1). Unit
length and unit time are chosen at 1 mm and 28.57 ms, re-
spectively.

xn Displacement of nth cantilever
χ′O = 133.1a On-site magnetic force coefficient
χ′I = 243.1a Inter-site magnetic force coefficient
d′1 = 3 Gap between permanent magnet and electromagnet
d′2 = 2.8b Gap between coupling permanent magnets
a This value is estimated at IEM = 30 mA.
b Coupling magnets are attached at `1 = 50 mm. The length of cantilever is `0 =

70 mm.
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Figure 2: Wave form of an intrinsic localized mode cen-
tered at n = 4.

tion is obtained:

ẍn = −(2π)2 xn − χ
′
O

xn(
x2

n + d′1
2
)3/2

− χ′I
xn − xn+1{

(xn − xn+1)2 + d′2
2
}3/2 − χ

′
I

xn − xn−1{
(xn − xn−1)2 + d′2

2
}3/2 .

(1)

Parameters in the equation is listed in Table 1. In numerical
simulations, the number of cantilevers is set at 8 and the
boundary condition is assumed to be periodic, namely, x0 =

x8, x9 = x1.

3. Floquet multipliers and eigenvectors

Several types of ILM coexist in the magnetically coupled
cantilever array [14]. In this paper, a site-centered ILM
shown in Fig.2 is focused on. The period of the ILM is
TILM = 0.98. The current flowing in electromagnets is fixed
at IEM = 30 mA.

The stability of ILM is determined by computing Floquet
multipliers [16]. In Fig. 3, all the Floquet multipliers are on
the unit circle in the complex plane. Therefore, the ILM is
not linearly unstable. In this paper, such ILM is simply
called stable ILM.

Floquet multipliers of ILM can be classified into two
groups by referring the shape of eigenvectors. One group
has spatially localized eigenvectors whereas the other has
spatially extended eigenvectors [16]. In Fig.3, eigenval-
ues having spatially localized eigenvectors are labeled as
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Figure 3: Wave form of an intrinsic localized mode cen-
tered at n = 4.
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Figure 4: Real part of eigenvector of ρ3.

ρk (k = 1, 2, 3, 4), where ρ̄k denotes the complex conjugate
of ρk. ρ1 and ρ2 are called the growth mode and the phase
mode [16]. They are always located at +1 because the ILM
is periodic solution and the system is Hamiltonian system.

Real part of eigenvector of ρ3 and ρ4 is shown in Fig.4
and Fig.5, respectively. In this case, x-components of
the eigenvectors are very small comparing with the v-
components. Hereafter, the eigenvector of ρk is denoted
by pρk . As shown in Fig. 4, the v-components has a peak
at n = 4. The symmetry of the eigenvector pρ3 is the same
as the ILM. Therefore, the symmetry of ILM will not be
changed when the ILM is perturbed along pρ3 . On the other
hand, the v-components of pρ4 is antisymmetric with re-
spect to n = 4 as shown in Fig.5. If the ILM is perturbed
along pρ4 , the amplitude of the central cantilever of ILM is
not changed because the v-component of pρ4 is zero. For
the other cantilevers, the phases are changed in antisym-
metric to n = 4. This deformation will force the ILM to
move along the array.

4. Parametric destabilization

The frequency of the fluctuation caused by a perturbation
along pρ4 is given by Ω4 = θ4/TILM. Therefore, to amplify
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Figure 5: Real part of eigenvector of ρ4.
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Figure 6: Unstable regions resulting from the parametric
resonance. The displacement of ILM exceeds 10−6 at t =

neTILM.

the fluctuation, a parameter in Eq.(1) should be varied with
the frequencies 2Ω4, Ω4, 2Ω4/3, Ω4/2, and so on accord-
ing to the previous work in a micro-cantilever array [12].
As shown in Fig.1, the cantilever array has electromagnets.
Thus, the on-site potentials can be adjusted in time. In this
section, the current flowing the electromagnets are varied
sinusoidally IEM = IA sin νt+ I0, where I0 is fixed at 30 mA.

In Fig.6, unstable regions where the ILM becomes un-
stable and fluctuated along the array are shown. The fluc-
tuation is detected based on the energy distribution (see
Ref. [12] for details). The color ne is the elapsed period
when the displacement of ILM’s position exceeds 10−6.
The horizontal axis ω′ = Ω4/ν corresponds to ω in the
Mathieu equation ẍ + ω2(1 + ε sin t)x = 0.

Two regions are located at ω′ ' 0.5 and 1. The region
at ω′ ' 0.5 has a similar shape to those in the Mathieu
equation. However, the lower peak of the region does not
rigorously coincide with ω′ = 0.5. The reason is still un-
clear.

The other region around ω′ ' 1 is somewhat different in
shape to the case of the Mathieu equation. For the region,
the period of the parametric excitation is about several ten
times of TILM. The ILM is thus subjected to the state for
relatively long time in which χ′O is too small to exist ILM.
Therefore, the ILM is possibly destabilized by decreasing
χ′O below a critical value at which a bifurcation occurs. The
region at ω′ ' 1 is emerged due to both the bifurcation and
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Figure 7: Behavior of a destabilized ILM when ω′ = 0.47
and IA = 20 mA.

 0  50  100  150  200

t

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

n

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

E
n

e
rg

y

Figure 8: Behavior of a destabilized ILM when ω′ = 1 and
IA = 20 mA.
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Figure 9: Traveling ILM resulting of parametric resonance
in the array with fixed boundaries. The solid curve indi-
cates the center of ILM. The parameter setting is the same
as in Fig.8 except the boundary condition.

the parametric resonance.

To show how the ILM behaves when it is destabilized by
the parametric excitation, time development of the energy
distribution is plotted in Fig.7 and Fig.8. The open circles
in Fig.6 indicate where the parameter is chosen. For both
figures, the energy is initially concentrated at n = 4, but it
is split into two parts. The two separated energy concentra-
tions collide at the opposite side of the array. After the first
collision, they are reflected and collided at the original po-
sition n = 4. This implies that the ILM is destabilized not
only along pρ4 but also pρ3 or other eigenvectors. On the
other hand, if the array has fixed boundaries as well as the
real experimental setup, the ILM begins to travel the array
as shown in Fig.9. Breaking the translational symmetry of
the ringed array may prevent ILM from splitting.
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5. Conclusion

In this paper, the possibility of creating a traveling ILM
via parametric resonance was investigated. As a result, it
was clarified based on the shape of unstable regions in a
parameter space that a stable ILM can be destabilized via
parametric resonance as well as in the micro-cantilever ar-
ray. However, destabilized ILMs break into two parts in-
stead of traveling in the array under the periodic boundary
condition whereas there exists an eigenvector having anti-
symmetric shape. On the other hand, a traveling ILM was
successfully created in the array having fixed boundaries.
This implies that boundary conditions plays crucial roles
for creating traveling ILMs especially for a small degree
of freedom system. In the future work, the destabilization
of ILM by the parametric excitation will be confirmed in
our experimental system in which the cantilever array has
fixed boundaries. It will be investigated numerically and
experimentally whether the effect of the boundaries can be
utilized to create traveling ILMs.
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