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Abstract—In this paper, we propose a controller gen-
erating a limit cycle for a 2-dimensional nonlinear control
system. First, we state our problem setting and some as-
sumptions. Next, we derive a controller that generates a
desired stable limit cycle for the system, and investigate
some characteristics of the controller. We then apply our
results to control of a spacerobot with an initial angular
momentum. Finally, some simulations are carried out to
demonstrate effectiveness of the proposed method.

1. Introduction

In various research fields, the concept of limit cycles is
quite important. For instance, stable walking or gait of
humanoid robots in robot engineering, oscillator circuits
in electronic engineering, catalytic hypercycles in chem-
istry, circadian rhythm in biology, boom-bust cycles in eco-
nomics and so on. Phenomenon of limit cycles is specific
for nonlinear systems, along with chaos, and it has been at-
tracted a lot of researcher’s interest. Hence, researches on
limit cycles have been vigorously done from mathematical
and engineering perspectives so far.

In control theory, a lot of researchers have focused on
synthesis problems of systems that generate limit cycles
[1]. For example, in recent work, synthesis methods of
nonlinear/hybrid systems whose solution trajectories con-
verge to desired limit cycles are proposed in [2, 3, 4], and
robust generation of oscillations for a class of nonlinear
systems is studied in [5, 6]. On the other hand, the num-
ber of studies on design of only control inputs that realize
a desired limit cycle for a given nonlinear control system
is too small. Since we design only control inputs to make
the solution trajectories converge to the desired limit cy-
cle, it seem to be quite difficult to solve the above synthesis
problem. However, such a synthesis method is desperately-
needed in not only nonlinear control theory, but also appli-
cations.

In this paper, we develop a controller design method that
generates limit cycles for 2-dimensional nonlinear control
systems. We first state our problem setting and give some
assumptions. Then, we introduce a switching-type con-
troller and derive some nonlinear control properties of the
proposed controller. Finally, we treat a planar spacerobot
with an initial angular momentum as an engineering exam-
ple in order to show the availability of the proposed control
strategy.

2. Problem Setting

In this paper, we consider a 2-dimensional manifold Q
and the following 2-dimensional nonlinear control system
defined in an open subset D ⊂ Q:

ẋ = f (x) + g(x)u, (1)

where x ∈ D is a state, u ∈ R is a control input and f , g :
D → T Q are smooth vector fields defined in D. We also
set a limit cycle function V : D → R, which determines a
desired limit cycle in D, and use notations for V(x):

D0 := { x ∈ D | V(x) = 0 },
D+ := { x ∈ D | V(x) > 0 },
D− := { x ∈ D | V(x) < 0 }.

(2)

Thus, the desired limit cycle is D0. We now give assump-
tions on V(x) as follows.

Assumption 1: The limit cycle function V(x) satisfies the
following properties.

(a) V(x) is a smooth function.

(b) V(x) = 0 determines an unique closed curve D0 in D.

(c) V(x) satisfies
VL f V < 0 (3)

at any point such that LgV = 0, where L f V means the Lie
derivative of V along f .

This paper deals with the following problem on genera-
tion of a limit cycle for the system (1).

Problem 1: For the 2-dimensional nonlinear control sys-
tem (1), find a control strategy that makes the desired
closed curve D0 an unique stable limit cycle in D.

3. Proposed Control Strategy

This section gives a solution of Problem 1, that is, a con-
trol strategy that makes a solution trajectory of the system
(1) a desired limit cycle. We propose the control input:

u =


−

L f V +
V
|V |
√

(L f V)2 + LgV · q(LgV)

LgV
(LgV , 0),

0
(LgV = 0).

(4)
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In (4), the function q : D→ R satisfies q(0) = 0 and

LgV · q(LgV) > 0, (5)

at any point such that LgV , 0. (4) is a kind of switching
controller, however, the following guarantees smoothness
of (4) when LgV = 0.

Proposition 1: The control input (4) is real-analytic in D+∪
D−.

From Propostion 1, we can rewrite (4) as

u = −
L f V +

V
|V |
√

(L f V)2 + LgV · q(LgV)

LgV
(6)

without using the cases. Next, we discuss the continuity of
(6) at D0. For δ > 0, set two subsets of D as

Dδ+ := { x ∈ D+ | ||x − y|| < δ, ∃y ∈ D0 },
Dδ− := { x ∈ D− | ||x − y|| < δ, ∃y ∈ D0 },

(7)

where || · || means the normal norm defined on D. By using
(7), we define the small input property of the limit cycle
function.

Definition 1: For each ϵ > 0, there exists a δ > 0 such that
|u| < ϵ makes

VL f V + VLgVu < 0 (8)

for x ∈ Dδ+∪Dδ−. Then, the limit cycle function V is called
to satisfy the small control property.

We now consider the control input (6) with q(LgV) =
V2(LgV)3, that is,

u = −
L f V +

V
|V |
√

(L f V)2 + V2(LgV)4

LgV
. (9)

Under the small input property of the limit cycle function,
we can prove the next proposition for (9).

Proposition 2: Assume that V satisfies the small input
property. Then, the control input (9) is also continuous in
D0.

Applying the control input (9) to the system (1), we can
derive the following main theorem on convergence of a so-
lution trajectory of (1).

Theorem 1: By the control input (9), A solution trajectory
of (1), which starts an arbitrary initial point x0 ∈ D, satisfies

lim
t→∞

V(x(t)) = 0, (10)

that is, the solution trajectory converges to D0 as time goes
to infinity.

It is noted that Theorem 1 guarantees only convergence
of the trajectory to D0, and does not guarantees the exis-
tence of a limit cycle. Denote the closed loop of the system

(1) with the controller (9) as

ẋ = f (x) −
L f V +

V
|V |
√

(L f V)2 + LgV · q(LgV)

LgV
g(x)

=: fc(x).

(11)

In order to make the solution trajectory a desired limit cy-
cle, we need to choose a suitable desired limit cycle, that
is, V . (i) the vector field fc of the closed loop system (11)
does not have any equilibria around D0, (ii) the vector field
fc is not parallel to ∇V(x) around D0.

Remark 1: If D0 is equal to the origin, then the control
input (6) is coincident with the Sontag-type controller with
the control Lyapunov function [7, 8]. In a sense, the pro-
posed controller (6) is an extension of the Sontag-type con-
troller to limit cycles.

4. Application to Spacerobot with Initial Momentum

In this section, we apply the control strategy derived in
Section 3 to an physical example. We treat the planar 2-
link spacerobot depicted in Fig. 1 [9, 10]. The spacerobot
consists of a body and an arm, and they are connected by
a joint. Let us denote the absolute angle of the body by
θ ∈ [0, 2π) =: S and the relative angle of the arm from the
body by ϕ ∈ S. For parameters, we set the distance between
the joint and the center of the body’s (the arm’s) centroid as
L (l), the mass of the body (the arm) as M (m), the inertia
moment of the body (the arm) with respect to its centroid
as JM (Jm). The spacerobot is assumed to have an initial
angular momentum P0 > 0.

Body

Arm

Initial Angular Momentum

Fig. 1 : Spacerobot with Initial Angular Momentum

The conservation law of angular momentum for the spacer-
obot is represented by

(M1 + A1 cos ϕ) θ̇ + (M2 + A2 cos ϕ) ϕ̇ = P0, (12)

where

M1 := JM + Jm +
Mm(L2 + l2)

M + m
, A1 :=

2MmLl
M + m

,

M2 := Jm +
Mml2

M + m
, A2 :=

MmLl
M + m

,

(13)

and we assume that M1 > A1 and M2 > A2 for the parame-
ters of the spacerobot.
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Denote the state variable as x = [ θ ϕ ]T ∈ S × S, and
hence the configuration manifold of the spacerobot is the
2-dimensional torus T2 ≈ S × S. We here assume that the
velocity of the arm ϕ̇ can be controlled, that is u = ϕ̇. Con-
sequently, from (12), we obtain the nonlinear control sys-
tem for the spacerobot:

[
θ̇

ϕ̇

]
=


P0

M1 + A1 cos ϕ
0

︸                  ︷︷                  ︸
f (x)

+

 −
M2 + A2 cos ϕ
M1 + A1 cos ϕ

1

︸                    ︷︷                    ︸
g(x)

u. (14)

It must be noted that the control system (14) has a drift
term f (x) arising from the initial momentum. Since f (x) ,
0, ∀x ∈ T2, (14) does not have any equilibria, and hence
the spacerobot cannot get still.

In [9, 10], the authors derive an analytical time optimal
control solution for a 2-link planar acrobot, that is, a control
strategy that makes the state of the robot a desired one at
a given terminal time. On the other hand, we deal with
another control problem. Our aim is to make the body of
the spacerobot face to a desired direction. To fulfill this, we
set

V(x) = θ − θd, (15)

where θd is the desired angle of the body. From (14) and
(15), we obtain

L f V =
P0

M1 + A1 cos ϕ
, LgV = −M2 + A2 cos ϕ

M1 + A1 cos ϕ
. (16)

Since M1 > A1 and M2 > A2, we can see that LgV ,
0, ∀x ∈ T2, and then Assumption 1 is satisfied.

Now, we show simulations of control of the spacerobot.
Set the parameters as M1 = 4, A1 = 2, M2 = 3, A2 =

1, P0 = 2, and the desired angle of the body as θd = 0. The
initial state of the spacerobot is given by x0 = [π π/4 ]. We
use the control input (9) with (15) and (16) to achieve our
aim.

Fig. 2 shows the time series of θ and ϕ. Note that θ and
ϕ take values in the rang of [0, 2π). In Fig. 3, the solution
trajectory from the initial point on the 2-dimensional torus
T2 is illustrated. From these figures, it can be confirmed
that the body’s angle θ converges to the desired angle θd =
0, and the solution trajectory behaves as a limit cycle. We
can verify that for any initial point, the solution trajectory
converges to the desired limit cycle.

Fig. 4 depicts the time series of the control input (9).
It can be checked that the amplitude of the controller con-
verges to 0 as the value of V tends to 0, then Proposition
2 is satisfied. However, since we simulate the system with
numerical computation and the controller switches at the
boundary of θ = 0, the chattering phenomenon occurs. The
time series of the value of V is shown in Fig. 5. We can
see that the value of V converges to 0 as time goes by, and
it can be confirmed that Theorem 1 holds.
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Fig. 2 : Time series of θ and ϕ
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Desired Limit Cycle

Fig. 3 : Solution Trajectory on Torus T2
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Fig. 4 : Time series of u
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We consider an attempt to eliminate the chattering phe-
nomenon as seen in Fig. 4. The chattering phenomenon is
caused by the switching function in (9):

V
|V | =

{
1 (V > 0),
−1 (V < 0).

(17)

Now, we introduce a change of (17) in (9) as

u = −
L f V +

V
|V | + δ

√
(L f V)2 + V2(LgV)4

LgV
, (18)

where δ > 0 is a constant. We can expect that the con-
troller smoothly switches around the boundary of V = 0.
Fig. 6 shows the time series of the control input (18) with
δ = 0.005. It can be confirmed that the chattering phe-
nomenon does not occur. Moreover, the time series of θ and
ϕ is depicted in Fig. 7, and from this we can see that the
body’s angle θ converges to the desired angle θd = 0, and
the solution trajectory behaves as a limit cycle, although
the controller (9) is modified by (18).
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Fig. 6 : Time series of u with (18)
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Fig. 7 : Time series of θ and ϕ with (18)

5. Conclusion

We have developed a controller design technique for a
2-dimensional nonlinear control system whose solution tra-
jectory converges to a desired limit cycle. Some character-
istics of the proposed controller have been derived from the

viewpoint of the smoothness and the small control prop-
erty. Then, we have applied the proposed control strategy
to a control problem of a spacerobot subject to an initial
angular momentum. Simulations have shown effectiveness
of the proposed control strategy. We consider some future
work as follows: (i) controller design for general nonlin-
ear control systems, (ii) applications to physical, biological
and engineering examples.

This study was supported in part by the Grant-in-Aid for
Young Scientists (B), No.18760321 of the Ministry of Ed-
ucation, Science, Sports and Culture, Japan, 2006-2008.
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[5] F. Gómez-Estern, J. Aracil, F. Gordillo and A. Bar-
reiro, “Generation of Autonomous Oscillations via
Output Feedback,” in Proc. of IEEE CDC 2005,
Seville, Spain, pp.7708–7713, 2005.
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