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Abstract – In this paper, we describe a strategy to 
encrypt and decrypt multiple data streams using optical 
chaotic carriers. We modify a well-known electro-optic 
chaos generator by adding another delayed feedback loop. 
In each loop, a Mach-Zehnder modulator is used to 
produce a signal (later referred to as a code) to convey a 
particular message. A multiplexed transmission of two 
messages at multi-Gb/s is numerically demonstrated.  
 
1. Introduction 

 
Optical chaos-based communications have focused 

their attention on the transmission of a single message at 
fast bit rates [1,2] using various types of chaotic 
generators such as wavelength chaos generators (WCG) 
[3], electro-optic intensity chaos generators (ICG) [4], 
phase chaos generator (PCG) [5], edge-emitting laser with 
optical feedback [6], or optoelectronic feedback [7]. 
Recently, there has been a growing interest in increasing 
the spectral efficiency of such chaos-based cryptosystems 
by transmitting multiple messages on a single 
communication channel. Originally developed for chaotic 
maps [8] and continuous scalar time-delay systems [9,10], 
chaos-multiplexing concepts (with no messages 
transmitted) have rapidly found resonance with 
optoelectronic devices. Actual chaos multiplexing was 
achieved with multiple microchip lasers with detuned 
frequencies [11] or multimode lasers [12,13], extending 
the concept of wavelength-division multiplexing (WDM) 
on top of chaotic optical systems (such an approach is 
known as chaotic WDM).  

In this paper, we aim at adapting the philosophy of a 
different multiplexing technique, known as code-division 
multiple access (CDMA), to the field of optical chaos-
based communications. CDMA consists of the use of 
fixed orthogonal codes that spread out the spectrum of 
binary data before being summed and transmitted [14]. At 
the receiver, similar codes are used to recover each data 
stream through correlation-based detection [15]. Within 
this framework, a better spectral efficiency would be 
achieved for chaos-based communications since multiple 
messages could occupy the same frequency band. 
However, replacing these codes by chaotic signals, while 

maintaining the orthogonal properties, is challenging in 
terms of design, because they change for every bit of 
information transmitted. This requires a particular 
attention in the choice of state variables and nonlinear 
functions processing them, otherwise high levels of cross-
correlation may exist [16] and could be detrimental to the 
various messages recoveries. In this paper, we propose to 
adapt the existing structure of ICG based on an electro-
optic oscillator (EOO) but using two feedback loops 
comprising of a Mach-Zehnder modulator for the 
generation of chaotic signals to be later used to carry the 
various messages.  

Our study is organized as it follows; we first describe 
our architecture and give its mathematical modeling, then 
we give insight on the properties of codes and their 
orthogonality. Finally, we demonstrate numerically the 
transmission of two binary messages at multi-Gb/s. 

 
2. Theoretical framework and Modeling 
 
2.1. Decryption of the Architecture 

 
    Our EOO-based multiplexing architecture for the 
emitter (E) is depicted in Fig. 1. The modified EOO has 
two cosine-square nonlinearities with different internal 
gains. It is made of a monochromatic CW semiconductor 
laser diode whose optical power P is divided in two 
separate arms and modulated by a Mach-Zehnder 
modulator (MZi) with respective constant-valued RF and 
DC half-wave voltages VπRFi

and VπDCi
, biased by voltage 

VDCi . Optical signals are linearly polarized and travel 
through different optical fibers DLi inducing fixed time 
delays Ti . They are recombined and detected by a single 
photodetector PD (of efficiency S), and their polarization 
directions are rotated by π/2 relative to each other with a 
half-wave plate (λ/2) to prevent optical interferences. An 
electrical signal is generated by the PD before being 
amplified with gain G and filtered by a band-pass filter 
with low and high cut-off frequencies denoted fL  and 
fH , respectively. Each loop has attenuation gain denoted 
gi <1 , achieved through the use of a voltage divider Di. 
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They induce different internal gains ω i  in the cosine-
square nonlinearities; they reduce the electrical voltage 
V (t)  before driving their respective modulator MZi. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 – Description of the chaotic emitter E based on an EOO 
with two feedback loops with inclusion of messages. The 
acronyms are CW LD : continuous-wave laser diode, MZi:  ith  
Mach-Zehnder modulator, DLi: ith optical delay line, λ/2-P: 
half-wave plate, PD: photo-detector, RF: RF band-pass filter, 
Di:  ith voltage divider. 
 
2.2. Modeling 
    
    Emitter E can be modeled using similar notations to [4] 
 

τ dx
dt

+ x + 1
θ

x(u)du
t0

t

∫ = s(t),                           (1) 

 
where x(t) = πg1GV (t) / 2VπRF1

is  the dimensionless  

variable of E, θ = (2π fL )
−1 , τ = (2π fH )

−1 , and s(t) is the 
multiplexed signal transmitted in the communication 

channel defined by s(t) = βi cos
2 (ω i xTi +φ0i )

i=1

2

∑ , with 

xTi = x(t −Ti ) , βi = πg1GSP / 2nVπRF1
 a nonlinear gain,  

φ0i = πVDCi / 2VπDCi
 a phase, and ω i = giVπRF1

/ g1VπRFi
an 

internal gain modifying the pulsation of its cosine-square 
function. 
 
3. Statistics of Chaos and Orthogonality 
 
3.1. Statistical Properties and Generation of Codes 
    
     Investigating the statistics of the state variable x(t)  is 
important in helping the design of proper chaotic codes 
for multiplexed chaos-based transmissions. Scalar time-
delay systems with a cosine nonlinear delayed feedback 
are known to exhibit hyper-chaotic regimes (existence of 
multiple positive Lyapunov exponents) with approximate 
Gaussian statistics [17]. With two feedback loops, our 
system exhibits strongly developed chaotic regimes [see 
Fig. 2(a)] with identical statistics to those of a single-
feedback system [see Fig. 2(b)].  
    These Gaussian statistics are then processed by the two 
different nonlinearities associated with the Mach-Zehnder 
modulator in each feedback loop. This leads to the 

creation of two optical signals denoted by 
si (t) = βi cos

2 (ω i xTi +φ0i ) , with i=1,2. These signals are 
natural candidates for an analog of CDMA codes in the 
context of optical chaos-based communications.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 – Time series of x(t) in (a), its probability density 
function (b) and its auto-covariance in (c). The auto-
covariance of signal s(t) is given in (d).  The parameters are τ 
= 25 ps, θ = 10 µs, Ti|i=1,2  = T = 30 ns, βi|i=1,2 = 5, φ0i|i=1,2 = −π/4, 
ω2 = 2ω1 = 2, and time step ∆t = 5 ps. 
 
3.2 Orthogonality 
 
     In this subsection, we investigate the dependence of the 
orthogonality (or decorrelation) on parametric differences 
existing between the two codes, namely, the differences in 
nonlinear gain Δβij = βi − β j , internal gain   
Δω ij =ω i −ω j , and phase Δφ0ij = φ0i −φ0 j . 
Orthogonality is measured by the absolute value of the 
normalized cross-covariance coefficient defined as 
 

ρsis j
=

si (t)− si⎡⎣ ⎤⎦ s j (t)− s j⎡⎣ ⎤⎦

si (t)− si
1/2

s j (t)− s j
1/2 =

Γ sis j

Γ sisi
1/2Γ s js j

1/2 ,        (2) 

 
where ⋅  is the time-average operator. This cross-
covariance coefficient is calculated during the time 
interval Tb , corresponding to the duration of a bit 
transmitted. Orthogonality depends significantly on the 
choice of Tb , which controls the number of point used to 
perform the cross-covariance calculations. We have 
chosen Tb = 0.4 ns  in order to investigate orthogonality 
for multiplexed transmission at 2.5 Gb/s. We consider no 
difference in nonlinear gain ( Δβij = 0 ) to guarantee that 
each code has approximately the same variance; instead, 
the impact of the nonlinear gain βi = β will be studied. 
Figure 3 shows the evolution of | ρsis j

|  in the parametric 

plane (β,Δω ij )with zero phase difference Δφ0ij = 0  in (a) 

and (Δω ij ,Δφ0ij )with β = 5  in (b). The cross-covariance 

measurements are averaged over 5000Tb . Figure 3(a) 
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shows the existence of a large zone of quasi-perfect 
orthogonality for Δω ij >1 and β > 2.5.  Figure 3(b) shows 
the existence of only four narrow zones of orthogonality 
that all merge as the difference in internal gain Δω ij  
increases. Further insight can be obtained by exploiting 
the approximate Gaussian statistics of x(t), which remain 
valid for sufficiently large values of Tb . We demonstrate 
that the cross-covariance between two chaotic codes 
satisfy the following equivalence: 
 

Γ sis j
≈ β 2 cos(2Δφ0ij )e

−2Δω ij
2σ x

2

,                                  (3) 
 
with the variance of x(t) depending on the nonlinear gain 
σ x
2 ∝β 2 . This highlights the key role of β  and Δω ij  in 

achieving high levels of orthogonality between the chaotic 
codes and their suitability for the transmission of data 
streams at high bit rates.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 – Evolution of the cross-covariance coefficient |ρ si,sj| in 
the parametric planes (Δω ij,β) in (a) and (Δω ij,Δφ0ij) in (b).  
 
 
4. Multiplexed Chaos-Based Communications 
 

In this section, we propose an architecture to encode 
and decode two messages, based on the emitter described 
in Sections 1-2. 

We have included the messages mi=1,2 = {−1,1} such 
that (i) they do not disturb s(t) too significantly (small 
modulation depth) and (ii) have their spectrum spread out. 
These two conditions are achieved by considering a new 
expression for the multiplexed signal 

 

s(t) = 1+δmi( )βi cos
2 (ω i xTi +φ0i ),

i=1

2

∑                            (4) 

 
with  |δ |1  the modulation depth. The multiplexing 
signal s(t) drives both the emitter E and the receiver R, 
described by a dynamical equation similar to Eq. 1 
 

τ dy
dt

+ y + 1
θ

y(u)du
t0

t

∫ = s(t −Tc ),                                   (5) 

 
with y(t)  the dimensionless state variable of receiver R 
and Tc the propagation time in the communication channel 
(without loss of generality one may consider Tc = 0 s ). 
With this particular coupling configuration, E and R 
exhibit complete chaotically synchronized evolutions. 
     The recovery of each message is based on a 
correlation-based technique similar to that used in CDMA. 
To perform the decryption, the codes si=1,2 (t)  used at the 
emitter must also be available at the receiver. The solution 
is to exploit chaos synchronization to duplicate the codes 
and create twin codes ′si (t) = βi cos

2 (ω i yTi +ϕ0i ) . Then, 
each user at the receiver calculates the cross-covariance 
Γ s ′si

 between his twin code ′si (t)  and s(t). The expansion 
of Γ s ′si

 leads to the following expression  
 
Γ s ′si

= (1+δmi )Γ si ′si
+ (1+δmj )Γ s j ′si

.                                 (6) 
 
    Assuming a high level of orthogonality between si (t)  
and s j (t) , it is possible to neglect the contribution of 

δmjΓ s j ′si in Eq. 6. Furthermore, with the twin codes being 
identical to the original ones, we can finally derive the 
decoding equation 
 

 δmi=1,2 j≠i =
1

Γ ′si ′si

Γ s ′si
− Γ ′si ′si

− Γ s j ′si( ).                                (7) 

 
Equation (7) is similar to the decoding equation in [16], 
except covariance is used instead of correlation in our 
study. It guarantees the possibility to decrypt each 
message independently. 
 
     We have numerically simulated the full transmission 
chain and apply Eq. (7) to retrieve independently the two 
binary messages encoded at 2.5 Gb/s. Our findings are 
presented in Fig. 4. The parameters are identical to those 
used in Fig. 2 and a modulation depth δ = 1 / 64  is 
considered. Dashed lines and solid lines represent the 
encrypted and retrieved messages, respectively. The 
simulations have been realized in optimal transmission 
conditions, assuming no noise, parameter mismatch, or 
distortions induced by the communication channel. 
Although no decryption errors are reported, small 
deviations are observed. They result from the neglecting 
of δmjΓ s j ′si with imperfect orthogonality existing between 

the two codes. To quantify the robustness of our method 
we have applied realistic level of noise and parameter 
mismatch to the system (a few percent) and we have still 
observed a satisfactory quality of the decryption. 
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Fig. 4 – Decryption of two data stream at 2.5 Gb/s (bit rate of 
the OC-48 standard). The purple dashed line is used as a 
threshold detection to discriminate messages’ values (“-1” and 
“1”). 
 
5. Conclusion 
 
In this paper, we have proposed to modify an existing 
electro-optic chaos generator to multiplex two binary data 
streams. The modification consists of having two delayed 
feedback loops comprising a Mach-Zehnder modulator. 
The optical chaotic signals generated at their output are 
used as modulating carriers to transmit two binary 
messages, while exhibiting a high level of orthogonality, 
if the system’s parameters are properly chosen. This has 
allowed multiplexing and demultiplexing of two binary 
messages at multi-Gb/s using a correlation-based 
detection, similar to that used by CDMA architectures. 
These results offer promising perspectives towards the 
realization of multi-user optical chaos-based 
communications.   
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