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Abstract—We combine advances in photonic integrated
circuits (PICs) with principles from neuromorphic engi-
neering to create a scalable, robust, and extremely high
bandwidth bio-inspired computational system. We de-
scribe such a system in a wafer-bonded III-V/silicon plat-
form, integrating the network (through passive silicon-
on-insulator technology) and the computational elements
(through active III-V laser devices) in a single substrate,
and corroborate its underlying principles through prelimi-
nary bench-top demonstrations.

1. Introduction

The ability to map a processing paradigm to its physi-
cal implementation, rather than abstracting physical effects
away entirely, represents an important step in streamlin-
ing efficiency and performance. The marriage of photonics
with spike processing—a computational paradigm utilized
in biological neurocircuits—is fundamentally enabled by
the strong analogies of the underlying physics between the
dynamics of biological neurons and lasers, both of which
can be understood within the framework of dynamical sys-
tems theory. Integrated photonic platforms offer an alter-
native approach to microelectronics. The high switching
speeds, high communication bandwidth, and low cross-talk
achievable in photonics are very well suited for an ultrafast
spike-based information scheme with high interconnection
densities. In addition, the high wall-plug efficiencies of
photonic devices may allow such implementations to match
or eclipse equivalent electronic systems in low energy us-
age. Because of these advantages, photonic spike proces-
sors could access a picosecond, low-power computation-
ally rich domain that is inaccessible by other technologies.

The photonic spike processor is a hardware building
block that, like a logic gate, enables the scalability and
noise robustness necessary to construct arbitrarily complex
systems, but, unlike a logic gate, uses hybrid analog-digital
codes to most naturally interact with the changing environ-
ment of radio spectra. The incorporation of a novel, bio-
logically inspired signal processing model to lightwave de-
vices imports the potential of high-complexity processing
to high-performance photonic hardware. Spike processing
circuits can be implemented in conventional device fabri-
cation processes for integrated optical interconnects, like
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Figure 1: A diagram of a fully integrated photonic spike
processor. The system could handle many fast-varying
(GHz) signals simultaneously and perform complex oper-
ations such as classification, recognition, and adaptation.
Such a unique processor could find use for spectrally aware
RF systems or complex systems analysis.

silicon and CMOS photonics: manufacturing process with
billions of dollars of commercial investment. From these
devices, our group has shown that unconventional circuits
sufficient for information processing can be constructed (as
shown in Figure 1). Using developing platforms such as
hybrid silicon/III-V PICs [1], on-chip systems with tens of
thousands of reconfigurable elements will be possible, al-
lowing the large range of possible behaviors needed for the
next generation of spectrally aware RF systems.

2. Processor Node

Recent years have seen the emergence of a new class of
optical devices that exploit a dynamical isomorphism be-
tween semiconductor photocarriers and neuron biophysics.
The difference in physical timescales allows these photonic
neurons to exhibit spiking behavior on picosecond (instead
of millisecond) timescales [2]. Spiking is closely related to
a dynamical system property that underlies all-or-none re-
sponses called excitability, which is shared by certain kinds
of laser devices. Excitable laser systems have been studied
in the context of spike processing with the tools of bifurca-
tion theory by [3] and experimentally by [4].
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Figure 2: (a) A circuit diagram of the proposed device.
Excitatory and inhibitory inputs are incident on photode-
tectors, which represent synaptic variables. The induced
photocurrent modulates carrier injection into a laser with
embedded saturable absorber, which may cause the laser to
transmit a pulse back into the network. (b) Analogy with a
biological neuron. The soma performs integration and then
applies a threshold to make a spike or no-spike decision.
After a spike is released, the voltage is reset. The resulting
spike is sent to other neurons in the network.

The LIF neuron model is a mathematical model of the
spiking dynamics which pervade animal nervous systems,
well-established as the most widely used model of biolog-
ical neurons in theoretical neuroscience for studying com-
plex computation in nervous systems. A simple model of
a single-mode laser with saturable absorber (SA) section
has been proven to be analogous to the equations governing
an LIF neuron in certain parameter regimes (Figure 2) [2].
We have recently designed excitable lasers specifically de-
signed for compatibility with common photonic integrated
circuit (PIC) platforms [5], and tested the dynamical model
in fiber-based bench-top experiments [6].

2.1. Bench-Top Model

We recently demonstrated [6] a fiber-based excitable
laser as a proof of concept of excitability with an embed-

  
Fig. 1. (a) Graphene excitable laser. (b) Generation of excitatory inputs. (c) Different topologies of phase space that can occur as the physical 
parameters (pump current, length of cavity, absorption.) are varied. We desire excitability in the second phase portrait (outlined in red).  
 

         

        
Fig. 2. Experimental results. For each plot, excitatory optical inputs on top (in blue) and response of graphene excitable laser at bottom (in red).  

In conclusion, we have demonstrated a novel excitable laser employing passively Q-switching with a graphene-
based SA. Such an excitable system has recently been theoretically shown to behave analogously to a spiking 
neuron [5][11], opening up applications to biologically inspired cortical algorithms for learning and adaptive 
control. Furthermore, an integrated version of this excitable laser could also be an enabler for applications of optical 
computing [12].  
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Figure 3: Experimental data of excitable fiber laser. (a)
Traces showing a response to multiple integrated stimuli
or one strong stimulus. (b) For too weak of an input, no
change in output is detectable.

ded SA. While the performance of this benchtop prototype
is much less than that of an integrated version (bandwidth:
100 kHz, energy per spike: 10 nJ), it experimentally con-
firms the possibility of using laser systems to emulate the
spike processing capabilities required for cortical process-
ing: temporal integration of multiple inputs, threshold de-
tection, and all-or-nothing pulse generation. Figure 3 is a
demonstration of the system’s ability to exhibit excitabil-
ity when a series of spikes are incident upon it. Excitatory
pulses increase the gain carrier concentration, which per-
forms temporal integration. Enough excitation results in an
excursion from equilibrium causing the laser to fire a pulse
due to the saturation of the absorber to transparency. This
is followed by a relative refractory period during which an
excitatory pulse is unable to cause the laser to fire. The
phase-space excursion resulting from an excitable response
is stereotyped and repeatable while subthreshold activation
results in no output: key all-or- nothing properties for pulse
regeneration, reshaping, and signal integrity.

2.2. Integrated Excitable Laser

As illustrated in Figure 2, our device consists of three
primary components: two photodetectors and an excitable
laser. The photodetectors receive optical pulses from a net-
work and produce a push-pull current signal which modu-
lates the laser carrier injection. The excitable laser acts as
a threshold decision maker and clean pulse generator anal-
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Abstract—We propose a hybrid silicon laser and photodetector
system that can emulate the electro-physiological behavior of a
real neuron at ultrafast time-scales. Networks of lasers would
scale up easily using a silicon III-V wafer-bonding platform.

I. INTRODUCTION

Neuromorphic networks have experienced a surge of popu-
larity over the last twenty years, motivated in part by bringing
computation closer to its underlying physics [1]. Scaling to
larger numbers of neurons, however, requires prohibitively
complex networks in which there is a fundamental density-
bandwidth trade-off. Alternatively, photonic systems can po-
tentially offer much higher bandwidths and lower energy
usage than electronics, making the spike-based approach to
information processing a perfect fit for the technology. Today,
there are a growing number of applications that require higher
speeds and lower latencies that may be outside the abilities
of the fastest electronic circuits, including processing of the
RF spectrum or ultrafast control. Taking advantage of the
ephemeral dynamics in photonic systems such as those in
lasers could lead to processors that operate on picosecond
time scales. In addition, there is a close analogy between the
dynamics of lasers and those of biological systems, both of
which can exhibit excitability [2].

Here, we propose a hybrid silicon distributed feedback
(DFB) laser and photodetector system that can emulate both
a Leaky Integrate-and-Fire (L&F) neuron and a synaptic
variable, completing a computational paradigm that can be
used to emulate a wide variety of functional cortical algorithms
[3]. Lasers offer a speed increase of about seven orders of
magnitude, outpacing both biological and electronic systems.
Networks of such devices are easily scalable using a silicon
III-V wafer-bonding platform [4].

II. DEVICE DESCRIPTION

As illustrated in Fig. 1, the device consists of three pri-
mary components: two photodetectors and an excitable laser.
The photodetectors receive optical pulses from a network
and produce a push-pull current signal which modulates the
laser carrier injection. The excitable laser acts as a threshold
decision maker and clean pulse generator analogous to the
neural axon hillock. A simple model of a single-mode laser
with saturable absorber (SA) section has been proven to be
analogous to the equations governing an L&F neuron in certain
parameter regimes [2]. We chose to implement this model
using a hybrid silicon evanescent DFB laser [5], the device
on the left in Fig. 2. The photodetector front-end proposed in
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inhibitory input 
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Fig. 1. A circuit diagram of the proposed device. Excitatory and inhibitory
inputs are incident on photodetectors, which represent synaptic variables. The
induced photocurrent modulates carrier injection into a laser with embedded
saturable absorber, which may cause the laser to transmit a pulse back into the
network. The resulting output travels to other devices in the network. Dotted
lines represent low-frequency pumping and bias wires.
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Fig. 2. Cross-section of a silicon hybrid evanescent laser neuron design.
Optically active III-V components are bonded to an SOI substrate with rib
waveguides. Optical spikes of potentially multiple wavelengths are incident
onto the photodetector (right) from a passive SOI network. The resulting RF
current pulse modulates the gain section of a two-section laser (left). (In-
hibitory photodetector and pumping current source not shown for simplicity.)
Legend : Si (gray), dielectric insulator (blue), III-V lower etch level (orange),
III-V upper etch level (yellow), metal (white), proton implanted III-V (black).

this paper adds full synaptic conduction dynamics that greatly
improve the capabilities and biological accuracy of the laser
neuron.

Much of the energy cost of electronic conversion in optical
systems comes from the need for high-speed clocked transistor
circuitry and the need to demultiplex WDM channels before
conversion. In our case, electronic conversion does not have
the goal of signal regeneration, but instead of exploiting
electronic physics for intermediate analog processing. The
use of passive integrated electrical wires does not sacrifice
bandwidth or sensitivity in this device. Pulse reshaping is not
required due to the clean pulse generation in the excitable
laser. The conversion between optical and electronic domains
also cutails the propagation of optical phase noise and the need
for direct wavelength conversion, thus eliminating two major

Figure 4: A schematic of an integrated excitable laser fully
integrated into a hybrid silicon/III-V platform. This device
can interface with a passive SOI network. Only one pho-
todetector (PD) is shown.

ogous to the neural axon hillock. We chose to implement
this model using a hybrid silicon evanescent DFB laser [5],
shown in Figure 4.

Much of the energy cost of electronic conversion in op-
tical systems comes from the need for high-speed clocked
transistor circuitry and the need to demultiplex wavelength-
division multiplexed (WDM) channels before conversion.
In our case, electronic conversion does not have the goal
of signal regeneration, but instead of exploiting electronic
physics for intermediate analog processing. The use of
passive integrated electrical wires does not sacrifice band-
width or sensitivity in this device. Pulse reshaping is not
required due to the clean pulse generation in the excitable
laser. The conversion between optical and electronic do-
mains also curtails the propagation of optical phase noise
and the need for direct wavelength conversion, thus elim-
inating two major barriers facing scalable optical comput-
ing. Every device in the primary signal pathway performs
both physical and computational roles, resulting in a ro-
bust, ultrafast, expressive, and extremely efficient signal
processing primitive.

3. Network
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Figure 5: An example of a network node, complete with
passive filters for neural weights.

The communication potential of optical interconnects

(bandwidth, energy use, electrical isolation) have received
attention for neural networking in the past; however, at-
tempts to realize holographic or matrix-vector multiplica-
tion systems have encountered practical barriers, largely
because they cannot be integrated. Techniques in silicon
PIC fabrication is driven by a tremendous demand for op-
tical communication links within conventional supercom-
puting systems [7]. The first platforms for systems inte-
gration of active photonics are becoming commercial real-
ity [1], and promise to bring the economies of integrated
circuit manufacturing to optical systems. Our work investi-
gates the potential of modern PIC platforms to enable large-
scale all-optical systems for unconventional and/or analog
computing, using a standard device set designed for digital
communication (waveguides, filters, detectors, etc.).

3.1. Broadcast-and-Weight

λ1"

λ2"

λ3"

λ4"

Waveguide"
WDM"

Figure 6: Diagram of a broadcast loop. Each unit has full
spectrum access to the outputs of every other unit within
the loop.

Our scheme leverages recent advances in PIC technol-
ogy to address interconnect challenges faced by distributed
processing. It has similarities with the fiber networking
technique broadcast-and-select, which channelizes usable
bandwidth using WDM; however, the protocol flattens the
traditional layered hierarchy of optical networks, accom-
plishing physical, logical, and processing tasks in a com-
pact network protocol. Although its processing circuits are
unconventional, the required device set is compatible with
mainstream PIC platforms. WDM effectively channelizes
available bandwidth without spatial or holographic multi-
plexing and avoids coherent interference effects during fan-
in. High-bandwidth optical channels are compatible with
our proposed laser neuron devices, which could access a
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picosecond computational domain that impacts application
areas where both complexity and speed are paramount.

In this scheme, a group of nodes (a node is illustrated
in Figure 4) shares a common medium in which the out-
put of every node is assigned a unique transmission wave-
length and made available to every other node (Figure 6).
Each node has a tunable spectral filter bank at its front-
end. By tuning continuously between the ON/OFF reso-
nant states, each filter drops a portion of its correspond-
ing wavelength channel, thereby applying a coefficient of
transmission analogous to a neural weight. The filters of
a given receiver operate in parallel, allowing it to receive
multiple inputs simultaneously. An interconnectivity pat-
tern is determined by the local states of filters and not a
state of the transmission medium between nodes. Rout-
ing in this network is transparent, massively parallel, and
switchless, making it ideal to support asynchronous signals
of a neural character.

3.2. Silicon Photonic Integration

Since routing is already performed by filters at the front
end of each laser neuron described in the previous sec-
tion, the broadcast medium must simply implement an all-
to-all interconnection, supporting all N2 potential connec-
tions between participating units. To satisfy these require-
ments, we use a loop-based architecture: a single integrated
waveguide with topology of a loop (i.e. ring). A broadcast-
and-weight cell thus consists of several laser neuron prim-
itives coupled to a BL medium, as illustrated in Figure 6.
This architecture allows each node in the network full ac-
cess to signals from every other network node. Filtering at
each node (Figure 5) allows neural weights to be applied.

The ability to control each connection, each weight, in-
dependently is critical for creating differentiation amongst
the processing elements. A great variety of possible weight
profiles allows a group of functionally similar units to com-
pute a tremendous variety of functions despite sharing a
common set of available input signals. Reconfiguration of
the filters’ drop states, corresponding to weight adaptation
or learning, intentionally occurs on timescales much slower
than spike signaling. Reconfigurable filters can be imple-
mented by a micro-ring resonator whose resonance is tuned
thermally or electronically. The broadcast medium could
be a silicon-on-insulator (SOI) waveguide, which is fully
compatible with the laser neuron structure described in the
previous section.

4. Conclusion

We have described a potential platform—enabled by
unique optoelectronic physics and the recent emergence of
scalable photonic integrated circuits (PICs)—that emulates
biological networks of neurons at ultrafast speeds. Sili-
con photonic platform development has revolved around
point-to-point links for multi-core computing systems. We

have examined an opportunity for this technology to extend
to unconventional architectures that rely heavily on inter-
connect performance. Broadcast-and-weight is a new ap-
proach for joining neuron-inspired processing and optical
interconnect physics. The LIF model with a synaptic vari-
able, coupled with tunable routing in a passive SOI network
on a scalable platform, could open computational domains
that demand unprecedented temporal precision, power effi-
ciency, and functional complexity. Its enormous bandwidth
capabilities would allow for a system to emulate cortical
functions at the time scale of radio frequency (RF) waves,
creating a system fully cognizant of all aspects of the RF
spectrum in real-time. In the long term, the platform could
provide wide-band, reconfigurable, and robust communi-
cation with flexible spectrum access in the RF spectrum on
a single chip.
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