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Abstract—Piecewise quadratic Lyapunov functions
(PQLFs) are proposed by Johansson and Rantzer in 1997.
They applied it for stability analysis of piecewise linear
systems. It is very effective for some of piecewise linear
systems. However, it seems that PQLFs are not so effective
for stability analysis of linear uncertain systems or non-
linear uncertain systems with polytopic uncertainties since
PQLFs coincide with ordinal QLFs for these systems. In
this paper, we propose a method to increase the freedom
included in PQLFs for getting less conservative stability
results for uncertain systems.

1. Introduction

The Lyapunov Direct Method, which is one of the most
powerful methods for stability analysis of nonlinear sys-
tems, depends crucially upon our ability to select a func-
tion that can establish stability of a given system. For
this reason, there has been a large number of papers ad-
vancing the computer-based methods for construction of
Lyapunov functions. In particular, the Linear Matrix In-
equality (LMI) approach was proposed, which is based
on Quadratic Lyapunov Functions (QLFs)[1] or Piecewise
QLFs (PQLFs)[2], as well as the Linear Programming-
Computer Geometry approach which utilizes Polytopic
Lyapunov Functions (PLFs) or Piecewise Linear Lyapunov
Functions (PLLFs) (see [3] – [6], and references therein).
We can reduce conservativeness of robust stability results
obtained by using PLFs and PLLFs by increasing freedom
included in PLFs and PLLFs. On the other hand, PQLFs
are mainly applied for stability analysis of piecewise lin-
ear systems and not so powerful in the context of robust
stability analysis.

The main objective of this paper is to propose a method
to increase the ability of PQLFs in analyzing stability of
nonlinear uncertain systems.
Notation. In this paper, R and Rn stand for the real num-
ber system and the n-dimensional real vector space, respec-
tively. For x ∈ Rn, x� is the transpose of x. For a (finite
or infinite) set V , co V denotes the convex hull of V . For
a set V ⊆ Rn, int V denotes the set of interior points of V .
For sets V,W ⊆ Rn, V\W stands for the complement of W
relative to V . For c ∈ Rn,H(c) denotes a hyperplane given
by {x ∈ Rn | c�x = 0}. For x ∈ Rn, |x| = √x�x. For a
polytope P, node P stands for the set of nodes of P and
| node P| stands for the cardinality of node P.

2. Preliminaries

2.1. Systems Description

Let us consider a system given by

ẋ = f (x), x(0) = x0 (1)

where x ∈ Rn is the system state vector, f : Rn → Rn,
and f (0) = 0.

In this paper, we consider stability of the 0 solution of
(1) within a given polytope X ⊆ Rn such that 0 ∈ int X.
Throughout the paper we assume the following:

Assumption 1 The function f satisfies the generalized
sector condition in X, that is, there exist hyperplanes
{H(c�), |c� | = 1}L0

�=1, and piecewise linear functions { fq}Qq=1

such that X is decomposed into smaller polytopes {Xm}M0

m=1
by {H(c�), � ∈ L0}, L0 = {1, 2, · · · , L0} and f (x) satisfies

f (x) ∈ co { fq(x)}Qq=1, x ∈ X (2)

fq(0) = 0 ∀q ∈ Q = {1, 2...,Q}, (3)

and fq is given by

fq(x) = Am,qx, x ∈ Xm, (4)

where m ∈ M0 = {1, 2, · · ·M0}.
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Fig. 1 An example of X, {H(c�), � ∈ L0}, and {Xm,
m ∈ M0}, where L0 = 2 and M0 = 4.

Let us consider some additional hyperplanes {H(c�),
|c� | = 1}L0+L1

�=L0+1. These hyperplanes divides Xm’s, and we
suppose that X is divided into I small polytopes {Xi}Ii=1
such that X = ∪i∈IXi, where I = {1, 2, · · · , I}. Note that
for each i ∈ I there exists a m ∈ M0 such that Xi ⊆ Xm.

Given arbitrary Xi, i ∈ I. Let xi be an arbitrary interior
point of Xi, and define

si,� =

{
1, if c�� xi > 0,
−1, if c�� xi < 0,

(5)
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Let L = L0 + L1 and L = {1, 2, · · · , L} and

Ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

si,1c�1
si,2c�2
...

si,Lc�L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Then, Xi can be represented by

Xi = {x ∈ X : Eix ≥ 0}, (7)

and we have

Eix = E jx, x ∈ (Xi ∩ Xj), (8)

because c�� x = 0 for all � ∈ Li, j and x ∈ (Xi ∩ Xj), where
Li, j ⊆ L is the set of suffix such that (Xi ∩ Xj) ⊆ H(c�) for
all � ∈ Li, j.

2.2. Piecewise Quadratic Lyapunov Functions

The candidate of piecewise quadratic Lyapunov function
(PQLF) is given by [2]

V(x) = (Eix)�R(Eix), x ∈ Xi, (9)

where R ∈ RL×L is a symmetric matrix.
We note that V(0) = 0 and V(x) is continuous because of

(8). In [2], the following stability result is shown.

Lemma 1 Let (γ̂, α̂, R̂, {Ûi}, {Ŵi}) be an optimal solu-
tion of

(LMI):

⎧⎪⎪⎨⎪⎪⎩
max

γ, α, R, Ui, Wi, i∈I
γ

subject to (10), (11) .

where
{
αI ≺ Pi − Ei

�WiEi, Pi = E�i REi

−γI � A�m,qPi + PiAm,q + E�i UiEi

i ∈ I, m : Xi ⊆ Xm, q ∈ Q, (10)

α > α, γ < γ, R = R�, Ui = U�i ≥ 0,

Wi = W�i ≥ 0, i ∈ I, (11)

α > 0 is a very small constant, γ > 0 is a very large con-
stant, and

Am,q =

[
Am,q bm,q

0 0

]
. (12)

If the optimal value γ̂ > 0, then V(x) in (9) is a Lya-
punov function for (1), and for any x0 ∈ Ω(ρmax), the so-
lution x(t; x0) of (1) stays in in Ω(ρmax) and converges to 0
exponentially, where Ω(ρ) = {x : V(x) ≤ ρ}, and ρmax =

max {ρ > 0 : Ω(ρ) ⊆ X}.

2.3. A Motivative Example

The basic idea of PQLF candidate given by (9) is to
switch V(x) according to the characteristic of the sys-
tem at x, that is, V(x) is switched from (Eix)�R(Eix) to
(E jx)�R(E jx) when a solution moves from Xi to Xj. It
seems that robustness issue is not considered so much in
[2]. If M0 = 1 and if L = 0, then it is just a robust stability
issue for linear polytopic uncertain systems, and the con-
dition (10) of Lemma 1 is a sufficient condition for robust
stability.

In this paper, we will propose to switch V(x) even in
Xi so that we can reduce the conservativeness of stability
results. We will do this by considering additional hyper-
planes to decompose Xi into smaller polytopes.

Example 1 Let us consider a system [7] given by

ẋ ∈ co {A1x, A2x}, x ∈ X = [−7, 7] × [−7, 7], (13)

where

A1 =

[
0 1
−0.06 −1

]
, A2 =

[
0 1
−1.94 −1

]
. (14)

This system is not quadratically stable[7], but by consider-
ing additional hyperplanes to decompose X smaller poly-
topes, we have a PQLF whose level set shown in Fig. 2.

H(η1)

H(η2)

H(η3)

H(η4)H(η5)

Fig. 2 A Stability region by PQLF

The main issue is how to choose such hyperplanes. In the
following sections, we consider this issue.

3. Modification of PQLF Candidates

3.1. Adding a Dividing Hyperplane

When the optimal value γ̂ of (LMI) is not positive, we
increase the freedom included in PQLF candidate V(x) by
introducing additional dividing hyperplanes. Let us con-
sider a hyperplane H(cL′ ), L′ = L + 1, |cL′ | = 1, which
divides, say J polytopes {Xi j }Jj=1 into Xi j = X′i j1

∪ X′i j2
, j =
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1, 2, · · · , J. So far, we have L′ hyperplanes {H(c�)}L′�=1 and
X is divided into I′ = I+J polytopes {X′i}I

′
i=1. For simplicity

of notation, we suppose that Xi = X′i for i = 1, 2, · · · , I− J,
and Xi = X′i ∪ X′i+J for i = I − J + 1, I − J + 2, · · · , I (that
is, i j = i j1 = I − J + j and i j2 = I + j, j = 1, 2, · · · , J). Let

p(i) =

{
i, i = 1, 2, · · · , I,
i − J, i = I + 1, I + 2, · · · , I′, (15)

and we determine {si,�} by (5), where i ∈ I′ = I ∪ {I +
1, I + 2, · · · , I′}, and � ∈ L′ = L1 ∪ {L + 1}. We note that
si,� = sp(i),�, for all i ∈ I′ and � ∈ L.

Define

E′i =
[

Ep(i)

si,L′c�L′

]
, R′ =

[
R r
r� r̂

]
, P′i = E′i

�R′E′i , (16)

U′i =
[
Ui ui

u�i ûi

]
, W ′i =

[
Wi wi

w�i ŵi

]
, (17)

and consider the corresponding (LMI)

(LMI)′:

⎧⎪⎪⎨⎪⎪⎩
max

γ′, α′, R′, U′i , W
′
i , i∈I′

γ′

subject to (18), (19) ,

where {
α′I ≺ P′i − E′i

�W ′i E′i ,−γ′I � A�m,qP′i + P′i Am,q + E′i
�U′i E′i

i ∈ I′, m : X′i ⊆ Xm, q ∈ Q, (18)

α′ > α, γ < γ, R′ = R′�, U′i = U′i
� ≥ 0,

W ′i = W ′i
� ≥ 0, i ∈ I′, q ∈ Q. (19)

Let (γ̂, α̂, R̂, {Ûi}, {Ŵi}) be an optimal solution of (LMI).
Then, it is easy to see that we have a feasible solution of
(LMI)′ by setting R = R̂, r = 0, r̂ = 0, Ui = Ûp(i)q, ui = 0,
ûi = 0, and Wi = Ŵp(i)q, wi = 0, q̂i = 0 in (16) and(17),
γ′ = γ̂ and α′ = α̂.

Therefore, we have the following:

Theorem 1 Let (γ̂, α̂, R̂, {Ûi}, {Ŵi}) be an optimal
solution of (LMI). Then (LMI)′ has an optimal solution
(γ̂′, α̂′, R̂′, {Û′i }, {Ŵ ′i }) such that γ̂′ ≥ γ̂.

In the remaining of this section we will consider how to
choose a hyperplane H(cL′ ) such that the optimal value γ̂′
of (LMI)′ satisfies γ̂′ > γ̂. For simplicity of notation, in the
remaining part, we use h rather than cL′ , i.e., cL′ = h. The
most straightforward way to approach this issue is to solve

(NP):

⎧⎪⎪⎨⎪⎪⎩
max

γ′, α′, r, r̂, ui, ûi, wi, ŵi i∈I′, h
γ′

subject to (18), (19) , h ∈ Rn,

where E′i and P′i are nonlinear and discontinuous functions
of h.

We approach this problem considering (NP) as a set
of subproblems. Each subproblem corresponds to the set
of polytopes which are divided by a hyperplane H(h).

Suppose that H(h) is given and it does not intersect any
xi, j ∈ (Xi\{0}). Then, we can determine

ŝi, j,L′ =

{
1, if h�xi, j > 0,
−1, if h�xi, j < 0,

(20)

for every xi, j ∈ (Xi\{0}), where i ∈ I. On the con-
trary, suppose that H(h) is not given but {ŝi, j,L′ , j =
1, 2, · · · , |( node Xi\{0})|, i ∈ I} is given. We say that
{ŝi, j,L′ } is feasible if

LP({ŝi, j,L′ }) :

⎧⎪⎪⎨⎪⎪⎩
max

h
1

subject to (21)

has a feasible solution, where

ŝi, j,L′ x
�
i, jh > 0, xi, j ∈ ( node Xi\{0}), i ∈ I. (21)

Proposition 1 Suppose that a feasible {ŝi, j,L′ } is given and
let h be an arbitrary feasible solution of LP({ŝi, j,L′ }). If
ŝi, j,L′ ŝi, j′,L′ = 1 for all xi, j, xi, j′ ∈ ( node Xi\{0}), then Xi is
not divided by the hyperplaneH(h), and si,L′ = ŝi, j,L′ . Oth-
erwiseXi is divided intoXi1 andXi2 , byH(h) and si1,L′ = 1
and si2,L′ = −1. Moreover, for any X′i = Xp(i) which is not
divided by H(h), we have si,� = sp(i),� for all � ∈ calL and
si,L′ = ŝp(i), j,Ł′ for any xi, j ∈ X′p(i)

Suppose that a feasible {ŝi, j,L′ } is given, and, hence, {si,L′ }
are determined for all Xi by Proposition 1. For simplicity
of notation, as we supposed, Xi = X′i for i = 1, 2, · · · , I− J,
and Xi = X′i ∪X′i+J for i = I − J + 1, I − J + 2, · · · , I. Then,
the corresponding subproblem is given by

NP({ŝi, j,L′ }):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
γ′, α′, r, r̂, ui, ûi, wi, ŵi, i∈I′, h

γ′

subject to
(18), (19), (21) , h ∈ Rn, |h| = 1,
R = R̂, Ui = Ûi, Wi = Ŵi,
i ∈ I, q ∈ Q

In (18), E′i ’s are matrix linear functions of h since {si,L′ } is
determined. But, P′i = E′i

�R′E′i is given by

P′i = P̂p(i) + si,L′ [E
�
p(i)rh� + (E�p(i)rh�)�] + r̂hh�, (22)

and, hence, P′i has quadratic term hh� and bilinear terms
rh�. These quadratic or bilinear terms are included in con-
straints of NP({ŝi, j,L′ }), and NP({ŝi, j,L′ }) is also difficult to
solve.

We change our strategy. We have the following.

Proposition 2 Let (γ̂, α̂, R̂, {Ûi}, {Ŵi}) be an optimal solu-
tion of (LMI). For i ∈ I and q ∈ Q, let us consider

(QP0)i :

⎧⎪⎪⎨⎪⎪⎩
max

x
x�Q̂ix

subject to x ∈ Xi,

where

Q̂i = A�mqP̂i + P̂iAmq + E�i ÛiEi + γ̂I, (23)
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and m is the suffix such that Xi ⊆ Xm.
Let x̂i be an optimal solution of (QP0)i, and let

x̂�
îq̂

Q̂îq̂ x̂îq̂ = max
i∈I, q∈Q

x̂�i Q̂i x̂i, (24)

If x̂�
îq̂

Q̂îq̂ x̂îq̂ < 0, then V(x) is a Lyapunov function for (1).

Suppose that x̂�
îq̂

Q̂îq̂ x̂îq̂ ≥ 0 and that a feasible {ŝi, j,L′ } is

given. We seek a vector h such that |h| = 1 and x̂�
îq̂

Q̂′
îq̂

x̂îq̂ <

x̂�
îq̂

Q̂îq̂ x̂îq̂ for some uîq̂ ≥ 0, ûîq̂ ≥ 0, r ∈ RL and r̂ ∈ R,

where

x̂�
îq̂

Q′
îq̂

x̂îq̂ = x̂�
îq̂

A�mqP′
î
x̂îq̂ + x̂�

îq̂
E′

î
�U′

îq̂
E′

î
x̂îq̂ + γ̂|x̂îq̂|2, (25)

in which P′
î

is given by (22), Uîq̂ = Ûîq̂, and R = R̂.
Once we have such a h, we divideXi’s byH(h) and solve

(LMI)’ to get a better PQLF candidate.

Theorem 2 There exist h such that x̂�
îq̂

Q̂′
îq̂

x̂îq̂ < x̂�
îq̂

Q̂îq̂ x̂îq̂

for some uîq̂ ≥ 0, ûîq̂ ≥ 0, r ∈ RL and r̂ ∈ R if and only if
there exist h such that gîq̂(h, r, r̂) < 0 for some r ∈ RL and
r̂ ∈ R, where

gîq̂(h, r, r̂) = sî,L′ [ŷ
�
îq̂

E�p(i)r(h� x̂îq̂) + (ŷ�
îq̂

h)r�Ep(i) x̂îq̂]

+ r̂(ŷ�
îq̂

h)(h� x̂îq̂), (26)

and ŷîq̂ = Amqx̂îq̂.

Note that gîq̂(h, r, r̂) includes a quadratic term
(ŷ�

îq̂
h)(h� x̂îq̂) and bilinear terms r(h� x̂îq̂) and (ŷ�

îq̂
h)r�.

However, (h� x̂îq̂) and (ŷ�
îq̂

h) are scalars, and, it is rather

easy to treat them than the case when quadratic or bilinear
terms are included in P′i . Define a polytope P({ŝi, j,L′ }) by

P({ŝi, j,L′ }) ={h ∈ RL : |hi| ≤ 1, i = 1, 2, · · · , L,
ŝi, j,L′ x

�
i, jh ≥ 0, xi, j ∈ node Xi, i ∈ I},

where hi denotes the i-th element of h. Moreover, we define

ξmax = max{x̂�
îq̂

h, h ∈ node P({ŝi, j,L′ }), h � 0}, (27)

ξmin = min{x̂�
îq̂

h, h ∈ node P({ŝi, j,L′ }), h � 0}, (28)

ηmax = max{ŷ�
îq̂

h, h ∈ node P({ŝi, j,L′ }), h � 0}, (29)

ηmin = min{ŷ�
îq̂

h, h ∈ node P({ŝi, j,L′ }), h � 0}. (30)

Let ξ = (x̂�
îq̂

h) and let η = (ŷ�
îq̂

h). For each (ξ, η) satisfying

ξmin ≤ ξ ≤ ξmax ηmin ≤ η ≤ ηmax (31)

we solve

(CP2)(ξ, η) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
σ,h

σ

subject to ξ − δ ≤ x̂�
îq̂

h ≤ ξ + δ,
η − δ ≤ ŷ�

îq̂
h ≤ η + δ,[

1 h�
h I

]
� 0,

[
σ h�
h I

]
� 0.

where δ > 0 is a small positive number.
Let (σ∗, h∗) be the optimal solution of (CP2)(ξ, η). If
σ∗ = 1, then we have a h∗ such that |x̂�

îq̂
h∗ − ξ| ≤ δ, |ŷ�

îq̂
h∗ −

η| ≤ δ, and |h∗| = 1, and we solve

(LP2)(ξ, η) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

r,r̂
g̃(r, r̂; ξ, η)

subject to |ri| ≤ 1, i = 1, 2, · · · , L,
|r̂| ≤ 1,

where g̃(r, r̂; ξ, η) = sî,L′ (ξŷ
�
îq̂
+ ηx̂�

îq̂
)E�p(i) r + ηξ r̂ and ri

denotes the i-th component of r ∈ RL.
Let (r∗, r̂∗) be the optimal solution of (LP2)(ξ, η). If

g̃(r∗, r̂∗; ξ, η) < 0, then we use h∗ as cL′ . If g̃(r∗, r̂∗; ξ, η) ≥
0, then we repeat above process for other (ξ, η). If
g̃(r∗, r̂∗; ξ, η) ≥ 0 for all (ξ, η) satisfying (31), we fail to
construct PQLF for the system (1). It might be better to re-
peat above process for other (ξ, η) even if g̃(r∗, r̂∗; ξ, η) < 0.

4. Conclusion

In this paper, we proposed a method to increase the free-
dom included in PQLFs for getting less conservative stabil-
ity results for uncertain systems. Because of the limitation
of spaces, we can not include examples to demonstrate the
usefulness of the proposed method. But readers who are in-
terested this results can be obtained more details including
examples from authors upon request. Theorem 1 is sug-
gested by Dr. Masubuchi. We appliciate it to him.
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