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Abstract—We formulated a heuristic search algorithm,
AmoebaSAT, inspired by the spatiotemporal oscillatory dy-
namics of a single-celled amoeboid organism that exhibits
sophisticated computing capabilities in adapting to its en-
vironment efficiently. AmoebaSAT finds a solution to an
NP-complete problem, the satisfiability problem (SAT), at
a speed that is dramatically faster than one of the con-
ventionally known fastest stochastic local search methods
for randomly generated 3-SAT instances. By implement-
ing AmoebaSAT using various nanodevices, we aim to
develop ultra-compact and ultra-low-power-consuming de-
vices with ultra-fast computational speed.

1. Introduction

The satisfiability problem (SAT) is stated as follows:
Given a logical formula f involving N variables xi, does
there exist an assignment xi ∈ {1, 0} (i.e., a combination of
N true/ f alse values) that satisfies f , which ensures that the
overall formula f is true? For example, a problem instance
f = (x1 ∨ x2 ∨¬x3)∧ (¬x2 ∨ x3 ∨¬x4)∧ (x2 ∨ x3 ∨¬x4)∧
(¬x3 ∨ x4 ∨ ¬x1) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ (¬x4 ∨ x1 ∨ ¬x2) ∧
(x4 ∨ x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3) has
the unique solution (x1, x2, x3, x4) = (1, 1, 1, 1). In general,
SAT instances involve logical formulae that have multiple
satisfying solutions (assignments) or that have no satisfy-
ing solution.

As the value of N increases, the total number of possible
assignments grows exponentially as 2N and no polynomial-
time algorithm for finding a solution is known. SAT be-
longs to the particularly difficult class of problems known
as NP (nondeterministic polynomial time). Moreover, SAT
was the first problem shown to be NP-complete; this means
that any problem in NP may be reduced to SAT in poly-
nomial time [1]. For this reason, fast algorithms and sys-
tems capable of solving SAT may be applied to solve an
extremely large number of application problems including
automatic inference, software/hardware verification, and
information security.

2. Amoeba-inspired Algorithm

Aono et al. formulated the AmoebaSAT algorithm
[2, 3], which utilizes the spatiotemporal dynamics of a
coupled system of 2N units corresponding to pseudopod-
like branches of a single-celled amoeba, to solve the N-
variable SAT problem. Each unit is assigned a variable
name i ∈ {1, 2, · · · ,N} and a truth/ f alse value v ∈ {0, 1}
and is associated with three variables Xi,v, Yi,v, Zi,v. If, at
discrete time step t, a resource is supplied to unit (i, v) (cor-
responding to the elongation of the amoeba branch), we
denote this by Yi,v(t) = 1, and we interpret this as meaning
that the system is considering the assignment xi = v. If no
resource is supplied, we write this as Yi,v(t) = 0. We put
Li,v(t) = 1 or Li,v(t) = 0 to indicate the application or non-
application, respectively, of a stimulus that “bounces back”
the supply of resources to Yi,v (corresponding to an optical
stimulus inhibiting the elongation of the amoeba branch).
State transitions of the values Yi,v ∈ {0, 1} are determined
by a dynamics involving the following fluctuations:

Yi,v(t) =
{

0 (if Li,v(t) = 1),
sgn(1 − ε − Zi,v(t)) (if Li,v(t) = 0), (1)

where ε = 0.25 and

sgn(z) =
{

1 (if z > 0),
0 (otherwise). (2)

Here the variable Zi,v ∈ [0.0, 1.0] obeys the following lo-
gistic map and gives rise to chaotic oscillations:

Zi,v(t + 1) = 4 Zi,v(t)(1 − Zi,v(t)). (3)

In short, if the bounceback stimulus is applied (Li,v(t) = 1),
the resource is not supplied (Yi,v(t) = 0). If the bounce-
back stimulus is not applied (Li,v(t) = 0), the resource is
allocated (Yi,v(t) = 1), unless the value of the logistic map
evolution exceeds 0.75, in which case the supply of the re-
source is blocked (Yi,v(t) = 0).

We also define a variable Xi,v(t) ∈ {−1, 0, 1} to repre-
sent the accumulated value of the resource-supply variable
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Yi,v(t):

Xi,v(t + 1) =


Xi,v(t) + 1 (if Yi,v(t + 1) = 1,

and Xi,v(t) < 1),
Xi,v(t) − 1 (if Yi,v(t + 1) = 0,

and Xi,v(t) > −1),
Xi,v(t) (otherwise).

(4)

The quantity Xi,v may be understood as an abstract rep-
resentation of the displacement from the equilibrium vol-
ume of the amoeba branches with one of the three values
{−1, 0, 1}. In each step, the variables X = (X1,0, X1,1, X2,0,
X2,1, · · · , XN,0, XN,1) are transformed into the variable as-
signments x = (x1, x2, · · · , xN) according to the following
rule:

xi(t) =


0 (if Xi,0(t) = 1 and Xi,1(t) ≤ 0),
1 (if Xi,1(t) = 1 and Xi,0(t) ≤ 0),

xi(t − 1) (otherwise).
(5)

Any logical formula that defines a given SAT instance
is expressed set-theoretically by replacing the literals xi

and ¬xi with i and −i, respectively. For example, the
above mentioned formula f is expressed in the form F =
{{1, 2,−3}, {−2, 3,−4}, {2, 3,−4}, {−3, 4,−1}, {3, 4,−1},
{−4, 1,−2}, {4, 1,−2}, {−1, 2,−3}, {1, 2, 3}}, where each
“clause” in f is represented by each element C in the set
F. SAT in which no clause contains more than three liter-
als are known as 3-SAT. It has been proven that 3-SAT is
NP-complete [1].

For now, we wish to focus on the leftmost clause (x1 ∨
x2 ∨ ¬x3) in f . If we have both x1 = 0 and x2 = 0, then
we require x3 = 1 in order for this clause to be true; in-
deed, otherwise we find (x1 = 0 ∨ x2 = 0 ∨ ¬x3 = 0) = 0.
For this reason, if at step t we have both X1,0(t) = 1 and
X2,0(t) = 1, then at step t + 1 we apply a bounceback
stimulus to Y3,1 (i.e., we choose L3,1(t + 1) = 1). We call
this rule a “bounceback rule”. Similarly, from the leftmost
clause we can read off the bounceback rules X1,0(t) = 1 ∧
X3,1(t) = 1⇒ L2,0(t + 1) = 1 and X2,0(t) = 1 ∧ X3,1(t) = 1
⇒ L1,0(t + 1) = 1. We proceed similarly to investigate all
clauses in f to analyze mutual interdependencies between
the variables and determine a set of all bounceback rules,
which are formally defined as follows [2, 3]:

Li,v(t + 1) =


1 (if B 3 (P,Q) such that Q 3 (i, v)

and ∀( j, u) ∈ P(X j,u(t) = 1)),
0 (otherwise),

(6)

where
B = INTRA ∪ INT ER ∪CONTRA (7)

represents the set of all bounceback rules; each of which
is a pair (P,Q) that is interpreted as signifying that “if P is
true, then Q is forbidden.”

The subset of B named INTRA is defined as follows to
reflect the fact that each variable xi is forbidden from taking
the values 0 and 1 simultaneously. For all i ∈ I, we have

INTRA 3 ({(i, v)}, {(i, 1 − v)}). (8)

The set INT ER is defined as follows to express interference
between the variables in each clause. For each variable i
contained in each element C ∈ F, we have

INT ER 3
{

(P, {(i, 0)}) (if C 3 i),
(P, {(i, 1)}) (if C 3 −i). (9)

where P includes the following elements for all j , i:

P 3
{

( j, 0) (if C 3 j),
( j, 1) (if C 3 − j). (10)

If f contains both clauses involving xi and clauses in-
volving ¬xi, then some rules in the set INT ER will serve
to prohibit xi from being assigned either of the values 0 or
1. For example, the two leftmost clauses in f , (x1∨x2∨¬x3)
and (¬x2 ∨ x3 ∨ ¬x4), generate the rules X1,0(t) = 1 ∧
X3,1(t) = 1⇒ L2,0(t + 1) = 1 and X3,0(t) = 1 ∧ X4,1(t) = 1
⇒ L2,1(t + 1) = 1, respectively. If we were to operate the
system under these rules, a state in which we have X1,0(t) =
X3,1(t) = X3,0(t) = X4,1(t) = 1 would lead to the application
of both bounceback stimuli L2,0(t + 1) = L2,1(t + 1) = 1,
thus yielding an inconsistent state in which variable x2 is
prevented from being assigned either 0 or 1. To avoid such
inconsistencies, for each i ∈ I we check the set INT ER and
define the set CONTRA as follows:

If (P, {(i, 0)}) ∈ INT ER and (P′, {(i, 1)}) ∈ INT ER,
then CONTRA 3 (P ∪ P′, P ∪ P′).

(11)
For any problem instance involving N variables and M

clauses with all clauses having three literals (3-SAT), we
have #(INTRA) = 2N, #(INT ER) = 3M, #(CONTRA) <
M2 (where # is the number of elements in a finite set).
Consequently, assuming that M typically grows as a linear
function of N, the time required to generate all bounceback
rules, the memory required to store them, and the time re-
quired to implement controls at each step based on these
rules all grow polynomially like poly(N2).

Under the bounceback rules defined above, if a system
state X = (X1,0, X1,1, X2,0, X2,1, · · · , XN,0, XN,1) satisfies, for
all (i, v), either the condition Xi,v(t) = 1 ⇔ Li,v(t) = 0 or
the condition Xi,v(t) ≤ 0 ⇔ Li,v(t) = 1, then the system is
“stable”. If this stability criterion is not satisfied, there is a
high probability that the sign of Xi,v(t + 1) differs from that
of Xi,v(t) depending on Li,v(t), and the state X is unstable.
Miwa et al. proved mathematically that the condition that
AmoebaSAT “stabilizes” in a state satisfying the above sta-
bility criterion is equivalent to the condition that the state
represents a “solution” to the SAT instance [4].

3. Performance evaluation

To evaluate the solution-searching performance of
AmoebaSAT, we selected a group of problems known as
Uniform Random-3-SAT, in which all clauses are formed
from three literals from the benchmark problems offered by
the online SATLIB library [5, 6]. We selected 100 instances
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Figure 1: Performances for 100 randomly generated 3-SAT
instances (N = 50).
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Figure 2: Performances for 100 randomly generated 3-SAT
instances (N = 75).

with N = 50 variables and M = 218 clauses, and 100 in-
stances with N = 75 variables and M = 325 clauses. The
difficulty of finding a solution varies depending on the ratio
of N and M; the presence of a phase transition in the vicin-
ity of M/N = 4.25, near which the number of steps needed
to find a solution suddenly skyrockets, has been previously
reported [7]. Thus, the problem instances considered in
this study, for which we have M/N = 218/50 ' 4.36 and
325/75 ' 4.333, are considered to rank among the class of
problems posing the high level of difficulty.

We considered WalkSAT, one of the categories of
stochastic local search algorithms presently known to be
the fastest heuristic methods for randomly generated 3-SAT
instances [8]. WalkSAT configures its initial state by as-
signing all variables to random true or f alse values. Then
the algorithm selects at random one clause from among the
clauses that are not satisfied (i.e., are f alse) with the vari-
able assignments at a given time and then chooses at ran-
dom a single variable from within that clause to flip (chang-
ing 0 to 1 or 1 to 0). The algorithm then iterates this basic
behavior.

For each problem instance, we ran 500 Monte Carlo sim-
ulations of both the AmoebaSAT and WalkSAT algorithms
and compared the average number of time steps (number
of iterations) t required to arrive at the solution. For the
instances of N = 50 and N = 75, Figures 1 and 2, re-
spectively, plot the number of steps needed to arrive at the

solution, sorted in ascending order. The plots indicate that
AmoebaSAT is able to find the solution with a speed orders
of magnitude greater than that of WalkSAT. The difference
in the solution-search performance between the two algo-
rithms is more significant for N = 75 than for N = 50. In-
deed, we observed that the impressive search performance
of AmoebaSAT becomes even more remarkable as N in-
creases. Moreover, although Figures 1 and 2 are compar-
isons of iteration counts, comparisons of the computation
time required to run the two algorithms on identical ma-
chines also reveal that the time required for AmoebaSAT to
find solutions is orders of magnitude less than that required
for WalkSAT. These results will be reported elsewhere.

Understanding the origins of the high performance ex-
hibited by AmoebaSAT is a subject of current investigation.
Whereas WalkSAT only updates one variable in each step,
AmoebaSAT incorporates many processes, which collec-
tively update multiple variables and evolve simultaneously
while interfering with each other through the bounceback
control mechanism. Analytical results have been obtained
that suggest that this unique “concurrent search” feature of
the algorithm is the source of its high performance.

The statistical properties of the chaotic fluctuations that
AmoebaSAT utilizes exhibit a significant influence on its
performance. When the logistic map evolution Zi,v in equa-
tion (3) exceeds the threshold 1 − ε = 0.75 in equation (1),
“error” occurs; even though the bounceback stimulus is not
applied (Li,v = 0) the resource is not supplied (Yi,v = 0).
The probability that Zi,v exceeds 0.75 is approximately 1/3,
which is understood as an “error probability” of resource
supply when Li,v = 0. In this paper we set ε to 0.25 not
because the error probability needs to be 1/3 but because
the logistic map has an unstable fixed point at 0.75. As Zi,v

tends to cross the fixed point repeatedly, when Li,v = 0, it
frequently happens that the value of Yi,v flips between 0 and
1; i.e., Yi,v(t + 1) = 1 − Yi,v(t). Thus,Yi,v evolves in a neg-
atively autocorrelated manner. Previously, some authors
demonstrated the usefulness of fluctuations with “negative
temporal correlations” for combinatorial optimization and
Monte Carlo computation [9, 10]. Indeed, when the logis-
tic map Zi,v in equation (1) was replaced by uncorrelated
white noise, the performance of AmoebaSAT declined dra-
matically even though the error probability remained un-
changed (i.e., we set ε ' 1/3), as shown in Figure 1 (cir-
cles).

4. Nanodevice Implmentations

By developing information processing devices that make
use of the physical properties and dynamics of nanomateri-
als and structures other than traditional CMOS devices, and
by using these hardware devices to implement the amoeba-
inspired algorithm, we can expect even greater efficiency,
miniaturization, and reductions in energy consumption. In
fact, spatiotemporal dynamics of photoexcitation (exciton)
transfer, mediated by near-field optical interactions be-
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tween multiple quantum dots, can be described by dynam-
ics exhibiting nonlocal spatial correlations and bearing sev-
eral similarities to the dynamics of intercellular resource
flow in the amoeba; these authors showed that, by intro-
ducing bounceback control to the nanophotonic system of
this type, the system can be made to search for solutions
to constraint satisfaction problems and SAT [3]. The pho-
toexcitation transfer in nanophotonics systems of this type
can be realized with 1/104 the power consumption of bit-
flipping circuits in traditional electronic devices [11]. Ap-
plying a similar nanophotonics system to the multi-armed
bandit problem, a decision problem whose objective is to
maximize profit, the system was capable of efficiently and
adaptively identifying the choice maximizing the probabil-
ity of obtaining compensation [12]. On the other hand, in
electronic systems, by utilizing charging and discharging
processes in a network of nonlinear elements and capaci-
tive elements, it is possible to search for solutions to con-
straint satisfaction problems [13].

5. Conclusions

In this paper, we showed that a solution-searching algo-
rithm inspired by the behavior of an amoeboid organism is
able to search for a solution to the satisfiability problem,
an NP-complete problem known to be related to a variety
of applications, with a speed orders of magnitude greater
than that of a traditional stochastic local search method.
Note that no algorithm for solving NP-complete problems
in polynomial time has yet been discovered, and indeed the
number of iterations required for AmoebaSAT to arrive at
a solution do grow exponentially, as shown in Figures 1
and 2. However, the exponential growth of the number
of iterations required to find a solution is dramatically re-
duced as compared to that of other algorithms; moreover,
an additional advantage of AmoebaSAT is the possibility
of allowing even faster computations to be implemented
by ultra-miniature nanoscale devices with ultra-low power
consumption. We hope this work will help to establish fu-
ture computing paradigms.
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