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Abstract

 

Uncertainty profiles are behavioral indexes 
that can be easily determined for a given CA cell structure 
and neighborhood, as a nonlinear relationship between the 
probability of a cell to be in state "1" when the 
probabilities of the neighbor cells in the previous iterations 
are known. They allow to predict the nature of CA 
dynamics without the need to effectively simulate the 
dynamics. This paper reviews the method of uncertainty 
profile as a method for designing for emergence and 
exemplifies it first time for CAs with 5 cells 
neighborhoods. The predictive power of this method is 
demonstrated in conjunction with other recent methods for 
nonlinear analysis and classification of CA dynamics.   

1. Introduction  

Cellular automata (CA) are a subclass of nonlinear 
dynamic systems endowed with certain characteristics that 
makes them attractive as naturally inspired, massively 
parallel computing architectures. Their applications range 
from modeling to cryptography and signal processing. 
Unlike traditional computers, where sets of instructions 
are used to build algorithms tailored to certain 
applications, in programming the CA the goal is to 
establish the values of a relatively small set of parameters 
called a cell s gene [1] such that a certain kind of dynamic 
behavior, with applicative potential, will emerge in an 
array of identical cells defined by the unique gene. Such 
dynamics is often called emergent although a precise 
definition of emergence is lacking for the moment. In the 
case of Boolean CA the gene is a vector of binary 
elements 021 ,..., yyy NNY defining the local Boolean 

function of a cell with Nn 2log inputs. The decimal 

representation of the above string will be called an ID. It 
is assumed that the desired dynamics is often vaguely 
specified (e.g. chaotic behavior or must have a Class 
IV behavior in the sense of Wolfram , etc.). Such problem 
is rather general and applies for any kind of nonlinear 
dynamic system. Although for some dynamic behaviors 
(typically the equilibrium behaviors) analytic approaches 
are possible, such as those given by various stability 
theorems, the design for emergence is still an open issue. 
In some sense, defining the programming of nonlinear 
dynamic systems to perform useful functions may have 
the same relevance as the defining of various 
programming techniques which sprung the explosion of 
the information technology using classic computational 

structures such as the microprocessor. Advanced nano and 
molecular technologies are ideal for the realization of CA 
computational mediums that will need adequate 
programming techniques to spread a new wave of 

computing applications. Only recently, starting with 
pioneering works in the area of local activity [2][3] the 
importance of such design for emergence techniques was 
recognized. A review of the such techniques is given in [4]. 
In the same work the uncertainty profile method (UPM) 
was first exposed. It allows to establish a mathematical 
relationship between the gene space and a behavior space 
without a need to simulate the dynamical system. Its 
effectiveness in predicting various emergent behaviors 
was demonstrated for elementary CA [5][9]. Certain novel 
relevant dynamic behaviors with interesting applications, 
such as binary synchronization of chaos [6][7][8] were 
also put in a direct relationship to the UPM method. In [9] 
we investigated the relationship between our UPM 
method and a set of nonlinear dynamic methods for 
classifying elementary CA. They are assigned precisely 
into 6 classes as described in [10][11] from a series of 
monumental works dedicated to a nonlinear dynamics 
approach to CA. It turned out that UPM may predict quite 
well if a CA with a given gene is in one ore another of the 
6 categories although its probabilistic nature gives also 
some little misclassification errors [9]. In this paper we 
extend the application of this method to one-dimensional 
CA with 5 cells neighborhoods. In Section 2 we will 
briefly review main concepts in designing for emergence 
when applied to cellular automata. Section 3 gives the 
definition of the uncertainty profile and formulae for its 
calculation in the case of our interest. Although the search 
space in this case is rather big (there are  232, i.e. about 4 
billion possible genes) in Section 4 we demonstrate how 
easily one can pick genes leading to desired dynamic 
behaviors from the 6 classes, while UPM defines an 
inverse relationship between the desired behavior space 
and the solution gene space.   

2. Cellular Automata and Design for Emergence   

The nonlinear dynamic systems investigated herein are 
CA with M cells given by the following discrete time state 
equation which applies synchronously to all cells (a cell is 
identified by a spatial index Mi ,..1 ) and with a 
specified initial condition for all CA cells:  
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where IDuuuuuCelly j ,5,4,3,2,1

 
is the local rule 

or transition function of a cell given a neighborhood of 
n=5 cells. A periodic boundary condition is assumed, such 
that when i=1 (leftmost cell) its neighbors to the left are 
given by indexes i=M, M-1. The local function is 
completely specified by the gene vector mentioned in 
Introduction, or its associated ID. In other words, the j 
index in the above is the decimal representation of the 
binary word 1,2,3,4,5 uuuuu .  

In [10][11] a precise classification and some expected 
behavioral properties of CA was given for all 88 basic 
elementary CA rules. Briefly speaking, the main feature to 
discriminate among classes was the length (period) of the 
most likely attractor (given a random initial state) and its 
dependency on the number M of CA cells.  Classes 1,2,3 
(with 26, 13 and 1 members) are similar in that for all of 
them there is a constant (1,2, or 3) period of the main 
attractor. Class 4, (or Bernoulli-shift), with 30 members, 
includes all CA rules leading, as for the previous ones, to 
a predictable period (given the gene and without 
simulating the CA) that depends linearly by the number of 
cells M. Finally, classes 5 and 6 (with 10 and 8 members 
respectively) include the most complex CA rules, where a 
prediction of the attractor length and its dependence on M 
is not possible without effectively running the CA. Rules 
in Class 5 are symmetric (bilateral) while those in Class 6 
are not. Quite notably, CA rules found so far by other 
researchers as possessing interesting properties fall in 
Chua s Class 6. 

As seen above, while various behavioral descriptors 
(e.g. the attractor length in the above, or Lyapunov 
exponents, or various entropies etc.) may be defined and 
associated with a behavioral space B, its association with 
the gene space G can be usually done only via an 
algorithm to simulate the nonlinear dynamics and 
compute the descriptors. Thus, associating a point 1g from 

the gene space to a behavior point 1gb A1 in B is 

straightforward. Such an approach makes extremely 
difficult to design for emergence (i.e. solve the inverse 
problem of finding 1g  when 1b is given). The difficulty 

stands in the lack of mathematical instruments to show the 

existence and to compute the inverse 1A  of the algorithm 
simulating the nonlinear dynamics. Yet, as seen in the case 
of stability theory, local activity theory, or as applied in 
the case of Classes 1-4 above, using nonlinear theory tools 
makes possible to directly locate genes for given 
behaviors. Still, remains of interest to locate genes 
associated with complex behaviors such as those in 
Classes 5-6 that may be also subdivided into even finer 
categories (e.g. among chaotic behaviors one may identify 
synchronizable behaviors etc.).  To achieve this goal we 
introduce next uncertainty profile as a vector of behavioral 
indexes. Associations between behaviors described 
previously in various classes and concrete values of 
uncertainty profiles were established in [9] and may be 
used to predict the behavior for arbitrary neighborhoods 

and sizes. In the next we will exemplify for the case of 
n=5 cells in a neighborhood (or, using a taxonomy 
introduced in [4] CA belonging to 1a5 family).    

3. Uncertainty Profiles as Behavioral Descriptors  

Uncertainty profiles are behavioral indexes that can be 
easily determined for a given CA cell structure and 
neighborhood.  The idea is to consider that all initial state 
(t=0) cells are in a quiescent state 1,0q  with 

probability 1kp , except a group of n neighbor cells 

assigned state 1 with probability 5.0 or maximum 
uncertainty 1ku . In our theory the uncertainty of a cell 

k is computed as 121 kk pu  and consequently it is 

0 in either cases when a cell is an sure state (0 or 1). As 
seen in Fig.1 the effective value of ku is less important 

than its spatial spread after one CA iteration (t=1), which 
relates to various types of CA behaviors as shown in [4].  

 

Fig.1. Uncertainty profile and its spread for CA with 5 cells 
in the neighborhood.   

For a given local Boolean function and probability of 
its inputs, it is possible to compute the output probability 
using an information theoretic approach. Details are given 
in [4], resulting that the output probability is a degree n 
polynomial with respect to the input probabilities and with 

nN 2 coefficients given by weighted summations of the 
gene s Y

 

bits. When the neighborhood arrangement is 
given, as shown in Fig.1, the polynomial output 
probability formulae allows to compute the uncertainty for 
all 2n-1=9 positions that are affected in the next state, i.e. 
resulting in an uncertainty vector 921 ,..,, UUUU . 

Without entering into details (explained elsewhere [12]) it 
turns out that for input uncertainties equal to 1 in the n=5 
additional cells (initial state) two representative 
probability matrices  R0 and R1 can be precisely defined, 

each having 2n-1 lines and nN 2 columns. R0 is given 
below while R1 is its mirrored version (last column of R0 

becomes the first of R1 , etc.): 
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Consequently the relationship connecting the gene 

space (represented by vectors Y

 
or their associated ID)  

with the behavior space (represented by U vectors) is 
given by the next equations: 

YRP0 0  and YRP 11

    
(2) 

1210 0PU  and 121 11 PU (3) 

110125.0 UUU NooNoo yyyyyy (4) 

The above relationships hold for any neighborhood 
provided that their corresponding R matrices are 
predetermined. It is clear that an inverse relationship 
between a given behavior and the resulting gene can now 
be established. A specialized software described in [12] 
allows the user to change the Y bits looking for the U 
vector to change so that it corresponds  to a desired 
behavior. Moreover, conditions for the existence of a 
certain behavior may be easily translated into conditions 
imposed to the gene bits, as shown in an exemple in [4] 
for the case of semi-totalistic CA. In [9] three types of 
dynamic behaviors (i.e. imploding or I, exploding or E, 
and preserving or P) were associated to a condition 
imposed to the uncertainty vector U. They may be 
summarized as follows:  

E: A profile is exploding

 

(i.e. uncertainty spreads 
within the array or in other words local connectivity gives 
rise to global computation like random number generation 
or computation with gliders etc.) if there are at least two 
members (elements) of the profile with maximum 
value( 1lk UU ) and they are distant at more than n 

cells (i.e. nlk ). Also, a profile is exploding if the 

above condition is not fulfilled but if the sum of 
uncertainties is larger than n

 

P: A preserving profile is a non-exploding one with at 
least n non-zero elements. Preserving behaviors imply 
that a computation takes place but dominated by the local 
connectivity (less complex, i.e. filtering). 

I: An imploding profile is a non-exploding one but 
with less than n non-zero elements. Such profiles are 
associated with a dynamics of the CA such that after a few 
(usually less than n) iterations, all cells are in the same 
sure state (all in 1 or all in 0 or oscillating). They 
correspond to period 1 and 2 behaviors.   

In addition, one can analyze the U vector from the 
symmetry point of view. A gene may be declared as S 
(symmetric, when left side elements of U are equal to 
their right side elements 

 

with 5U in the middle) or A 
(asymmetric) and in this later case a degree of symmetry 
may be also computed [9]. It is noted that symmetric 
behaviors are less complex than asymmetric ones. For the 
256 elementary CA a comparison between the 
classification in [10][11] and the one induced by the U 
profile gave a relatively consistent match following the 
rules given in the next table:  

Class [10]: 1 and 2 3 4 5 6 
U-based 
behaviors 

I PS PA ES EA 

In addition to Chua s classification, the UPT method 
reveals finer subdivisions within each behavioral domains 
and relationships to other interesting dynamic behaviors. 
For instance, most asymmetric (A) rules with exploding 
and preserving U profiles do have attractors that 
synchronize binary (the state of only one cell per iteration 
is sent to the receiver). Particularly interesting are those in 
the exploding case since they are usually chaotic. It was 
also found that binary synchronization is unlikely for 
symmetric (S) profiles. Also gliders are favored by a sum 
of uncertainties in the U profile that is close to n.   

4. Selection of Desired Behaviors for the 1a5 CA   

Let us consider the following problem: find a gene Y 
(or its associated ID) such that its corresponding 1a5 
CA behavior is exploding and asymmetric (i.e. one 
that is the most complex).  

A first solution is given next using a software that 
evaluates equations (2) (3) (4) interactively. We know that 
we are looking for a vector U which is asymmetric (A) 
and fulfills the condition E. One simple way to look for a 
gene is to enter an arbitrary  decimal ID i.e. 22 2 until it 
is seen that the corresponding U profile fulfills the desired 
conditions. Such a situation is presented in Fig.2 from the 
panel of the software. The resulting profile is   
U= 32/16 8 16 14 15 14 8 8 0 with a sum of uncertainties 
equal to 6.1875 (i.e. larger than 5.5). It is also clear that it 
is an asymmetric profile.   

 

Fig.2. A particularly computed uncertainty profile for a given 
ID= 2222222222.   

To test if the desired behavior is indeed in that class, 
one may employ the key simulate producing the 
evolution shown in Fig. 3 (time is on the vertical axis): 

 

Fig.3. Dynamic evolution of CA with ID=2222222222 
exhibiting a complex behavior (interacting gliders)  

The same software allows to test for the binary 
synchronization property in a CA with the same ID and a 
given number of cells (time is now on the horizontal axis). 
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Three traces (upper is the Tx CA, middle the Rx CA and 
lower trace the difference of states between Tx and Rx) 
show that indeed such a phenomena occurs as predicted 
and expected for EA behaviors (Fig. 4). 

 

Fig. 4: Dynamic evolution of a system formed of two master-
slave CA with ID=2222222222. It is seen that after certain 
number of iterations the Rx CA is synchronized by one bit 

received from Tx CA.  

Another solution to pick genes with desired behaviors 
consists in selecting a random pool of IDs (here 10,000) 
and use the UPT method to calculate the U profile for 
each of them. Note the very good speed of our method, 
where all profiles for 10,000 IDs were calculated in less 
than one second on a personal computer. A behavior space 
may be drawn as shown in Fig.5 after selecting two 
important parameters (cumulated uncertainty, i.e. the sum 
of all elements in U, and a symmetry index 

 

detailed in 
[9]). Each point is assigned one of the behavioral classes 
as discussed before.  

 

Fig.5. Distribution of 10000 IDs in a behavioral space 
determined by their U profile.   

In addition to these classes it was observed that the 
most interesting behaviors hold for a low (but non zero) 
asymmetry index and in the edge between P and E 
behaviors. Since for each point in the behavioral space a 
list of IDs is given, looking for a desired behavior in such 
sub-regions (e.g. the black dots in Fig.5. located on the 
lower edge of the behavioral triangle domain) allow to 
rapidly locate IDs leading to desired CA dynamics.  
Simulations of such genes confirm the prediction. It is 
interesting to answer how many rules are assigned to each 
behavioral category.  Using 10000 randomly selected IDs 
the conclusion is given in the next table, where the results 
for elementary CA (or 1a3 according to taxonomy in 
[4]) from [9] are given for comparison. 
Behavioral class I PS PA ES  EA 
1a5 CA 0.1% 0.3% 17.3% 1.6% 80.7%

 

1a3 CA 9.1% 20.4%

 

39.7% 15.9% 14.9%

 
Concluding, the UPT method may be conveniently 

applied to 1a5 type CA to identify desired behaviors. 
From the above table is clear that now most (more than 
80%) of the CA cells are associated with complex 
dynamics instead of only 15% in the case of elementary 
( 1a3 ) CA.  
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