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Abstract– Identifying biologically useful genes from 

massive gene expression data produced by DNA 

microarray experiments is a crucial issue in bioinformatics 

and clinical area. Recent studies on gene module 

discovery have shown substantial usefulness for 

identifying genetic subtypes in single disease class, but 

the extension to different disease classes has remained to 

unsolved. In this paper, we propose a new method to 

discover differentially expressed gene modules from two 

class dataset. The proposed method is applied to breast 

cancer and leukemia datasets, and the biological functions 

of the extracted modules are evaluated by functional 

enrichment analysis. As a result, we show that our method 

can extract genes reflecting known biological functions 

compared to a traditional approach.   

 

1. Introduction 

 

DNA microarray technology has enabled us to measure 

expressions of thousands of genes simultaneously under a 

certain condition and has yielded various biological 

applications such as functional analysis of genes or 

identification of up- and down-expressed genes in 

complex diseases like cancer. An important step of 

microarray data analysis is to identify groups of genes 

with similar expression patterns across multiple samples 

(e.g., normal/disease cells) in a gene expression dataset. 

Although traditional clustering algorithms like 

hierarchical clustering provide natural solutions to this 

problem, it is bound by a limitation that they use all 

dimensions of samples to compare pair of genes even if 

these have relevance only in a subset of samples.    

On the other hand, a new clustering technique called 

biclustering has focused on finding gene expression 

modules (“modules” for short) with a locally similar 

expression pattern across subset of samples. We 

previously developed an exhaustive and efficient 

biclustering algorithm (BiModule) for module search, and 

reported that it can well reflect known biological functions 

compared to other salient methods [1]. Existing methods 

including BiModule have targeted single class dataset but 

have not been applied to multiple classes so far.   

The aim of this study is to provide a new method for 

identifying differentially expressed modules between 

different two-classes in a gene expression dataset. In the 

proposed method, specificity score for each module is 

defined to rank according to expression difference 

between classes. It is expected that such discriminative 

modules in different classes would become candidates of 

genetic biomarkers in disease diagnosis. In this study, this 

method is applied to two public cancer datasets and its 

performance is evaluated through functional enrichment 

analysis of obtained modules.  

 

2. DNA microarray data and gene expression module 

 

2.1 Gene expression dataset 

 

Figure 1 illustrates a gene expression dataset obtained 

by multiple DNA microarray experiments in a single class. 

A single DNA microarray generates expression values of 

thousands of genes simultaneously for a single sample 

(e.g., a normal/disease cell). Each point on a DNA 

microarray indicates a gene and its intensity represents the 

expression level. The set of expression values obtained 

from a single DNA microarray is called a gene expression 

profile. In multiple samples, the gene expression profiles 

are arranged in the form of a matrix in which each row 

and each column respectively correspond to a gene and a 

sample, and each element is an expression value of a gene.  

 

2.2 Module extraction by biclustering 

 

Figure 2 depicts module extraction from gene expression 

dataset in a single class. A module is defined as a subset of 

genes with a common expression pattern over subset of 

samples. In many past studies, it has been shown that 

genes composing a module play a biologically important 

Figure 1: Gene expression datasets obtained from DNA 
microarray experiments 
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role, participating in an identical genetic pathway. 

Biclustering can identify various sample subgroups having 

different co-expressed genes from single class but has not 

been extended to discriminative module extraction from 

two-classes as proposed in this study. 

 

3. Materials and Method 

 

3.1. Outline 

 

Motivated by the issue as described in Section 2.2, we 

develop a new method for identifying discriminative 

modules between different classes. Figure 3 shows the 

outline of this method. First, we search for modules 

exhaustively from respective classes by using a 

biclustering technique called BiModule (Fig. 3a). Next, 

the extracted modules are scored and ranked based on 

their specificities representing the discriminative powers 

between classes (Fig. 3b). 

 

3.2. Module extraction from each class 

 

To extract modules from each class, we utilize the high-

performance biclustering tool called BiModule. 

Biclustering typically requires high computational 

complexity due to combinatorial searches for both of 

genes and samples, whereas BiModule can exhaustively 

search for maximal modules from discretized expression 

data in real time based on a closed itemset mining 

algorithm called LCM [2]. BiModule shows the highest 

enrichment of gene function sets as well as the fastest 

running time among five salient algorithms in yeast data 

and human cell/tissues data. This tool requires a 

discretization bins and the minimum size of modules as 

the input parameters. In this study, we use 7 as the 

discretization bins, and set 10 and 4 as the minimum 

number of genes and samples, respectively. In this method, 

BiModule are applied separately to each class as 

illustrated in Fig. 3a. 

 

3.3. Identification of discriminative modules 

 

As the candidates of discriminative modules, first, we 

pick up only the constant modules in which all discretized 

values have identical signs as depicted in Fig. 2b. 

Discriminative modules between classes are selected from 

those constant modules. Here we define the specificity 

score that represents the discrimination power between 

classes. The specificities of the constant modules are 

calculated in each class separately. Hereinafter the 

targeting class and another class are respectively referred 

to as class A and class B, where the targeting class means 

the class in which we perform the specificity calculation. 

We consider calculating the specificity of a constant 

module X in class A. First, in class B, we enumerate all 

combinations of modules Yi (i=1,2,..,C) in the same genes 

and the same size of samples as the X as illustrated in Fig. 

2b. Next the specificity S of the X is calculated by the 

following expression:  

 

𝑆 = min1≤𝑖≤𝑐 sgn(𝑚)
log 𝑠𝑋

log 𝑠𝑌𝑖

   

sgn 𝑚 =  
    1, 𝑚 > 0
    0, 𝑚 = 0
 −1, 𝑚 < 0

   (1) 

𝑚 = −(𝑚𝑋 × 𝑚𝑌𝑖
)    

 

where SX and SYi are respectively the standard deviations 

of the discretized values for the X and the Yi, and mX and 

mYi are respectively the mean values of the discretized 

values for the X and the Yi. The larger specificity of the X 

is the larger expression difference between classes is. The 

specificity calculation is performed for every constant 

module X in class A.  These modules are ranked in 

descending order of their specificities. The specificity 

calculation in class B is performed in the same manner as 

class A. Finally, discriminative modules of each class are 

extracted by setting a threshold to the rank orders of the 

specificities. 

 

Figure2: Module extraction from gene expression 

data 
Figure3: The procedure of our method 
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4. Experiments 

 

4.1. Datasets 

 

To evaluate the usefulness of our method, we use the 

two-class gene expression datasets, leukemia [3] and 

breast cancer [4]. The breakdown of each dataset is as 

follows:  

 Leukemia :       12,582 genes 

class1 (ALL): 24 samples 
class2 (AML): 28 samples 

 Breast cancer :  7,129 genes 

class1 (positive) 25 samples 

class2 (negative) 24 samples 

 

4.2. Functional analysis of discriminative modules 

 

We evaluate if the genes composing the extracted 

discriminative modules (called module genes below) 

reflect properly known biological functions. In this study, 

the functions of the module genes are identified by using a 

functional enrichment analysis tool called GeneCoDis [5, 

6]. GeneCoDis provides a statistical probability (p-value) 

that a certain biological function occurs x-times by chance 

in a given list of genes. This tool enables us to find 

statistically significant biological functions for the four 

functional themes, gene function (GO: Gene Ontology), 

molecular interaction (KEGG: KEGG pathway), motif 

sequence (IPM: InterPro Motifs) and transcription factor 

(TF). 

 

4.3. Evaluation 

 

The evaluation is conducted on the following two:   

1) Correlation between specificity scores and 

module ranking.  

2) Comparison with a traditional method. 

To examine the first one, we extract the top 50 

discriminative modules in descending order of the 

specificities and then generate the distribution for the p-

values of the significant functions found in their module 

genes. In the second one, we compare our method with the 

t-test-based approach (called t-test approach below) that 

has been widely used in differentially expressed gene 

analysis. 

 

5. Results and Discussion 

 

5.1. Correlation between the specificity scores and 

module ranking  

 

Figure 4 show the p-values judged to be significant 

functions (p<0.0001) in the respective rank orders of 

specificities for the breast cancer (Fig. 4a) and leukemia 

datasets (Fig. 4b). In this figure, the p-values for the four 

functional themes are plotted all together. The horizontal 

and vertical axes show the p-value and the rank order of 

specificity, respectively. From these two figures, we can 

see that discriminative modules with larger specificities 

are characterized by the more significant functions. This 

result suggests that specificity in our method well reflects 

known biological functions. 

 

5.2. Comparison with a traditional method 

 

Subsequently, we compare our method with t-test 

approach. The t-test approach used here consists of the 

following steps; first, t-test is applied for each gene and 

only genes with smaller p-values than a certain significant 

level are selected. Next, these selected genes are grouped 

into gene clusters showing similar expression patterns by 

using a hierarchical clustering (HCL). After that, we 

utilize the cluster boundary discovery tool ASIAN [7] to 

obtain the optimal cluster separation. Finally, functional 

enrichment analysis for each cluster is conducted by 

GeneCoDis. 

The significant functions of discriminative modules are 

compared to those of the clusters generated by the t-test 

(b) Leukemia (a) Breast cancer 

Figure4. Correlation between the specificity scores vs. module ranking 
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approach. The comparison is performed using the relative 

frequency distributions of p-values (< 0.001) for the four 

functional themes in Section 4.2. Figure 5 shows the 

results for breast cancer (Fig. 5a) and leukemia datasets 

(Fig. 5b), where the relative frequency (%) is depicted 

with three ranges of the p-values. The horizontal and 

vertical axes are respectively the p-value and the relative 

frequency, and gray and white bars show the results for 

our method and the t-test approach. 

In the breast cancer dataset (Fig. 5a), the discriminative 

modules obtained by our method are characterized by 

significant functions in all of the themes. In contrast, the 

clusters in the t-test approach include no significant 

functions except for GO functions. As for the leukemia 

dataset (Fig. 5b), we cannot observe obvious differences 

between the two approaches although the both exhibit 

significant functions in all themes. From the two figures, 

however, we can see that our method shows better results 

than the t-test approach in the KEGG functions. Namely, 

this suggests that our method outperforms the t-test 

approach in discovery of genes interacting within the 

actual living cells. 

 

6. Conclusions 

 

In this paper, we proposed a new method for extracting 

differentially expressed gene modules from two-class 

gene expression dataset and applied it to breast cancer and 

leukemia datasets. The results of functional enrichment 

analysis for extracted discriminative modules revealed 

that our method can extract genes well-reflecting known 

biological functions compared to the traditional t-test 

approach. We expect that our method becomes a 

promising tool for identifying candidates of gene 

biomarkers for various intractable diseases like cancer. 

We however have not provided any definition of the 

critical value (the threshold) in the ranking of the 

specificities. Thus the top 50 discriminative modules used 

in this study might include indifferent modules between 

classes. In the future work, we will develop a method to 

detect automatically the threshold value for specificity. In 

addition, we will extend the method to a new 

classification tool based on the discriminative modules. 
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