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Abstract– The paper first reports statistical and nonlinear
dynamical analysis of a sequence of 10 million paired
outputs from two synchronized free-space lasers. The
objective is to make an empirical study of such outputs
prior to their use as message carrying waves in chaos
communication applications. The results obtained from
this investigation support the use of synchronized chaotic
laser waves in a somewhat modified version of binary
antipodal chaos shift-keying (CSK) communication.
Instead of studying BER performance by mathematical
simulation of chaotic sequences, the more realistic laser
waves are used to obtain spreading sequences. CSK
theory of BER involving Gaussian assumptions is adapted
and comparisons made with empirical results which are
not supported by Gaussian assumptions. Differences are
not large, except at high spreading, but suggest future
enhanced modelling.

1. Introduction

Chaos communication has been investigated over more
than the past decade, see [1], [2], beginning with the use of
mathematically generated chaos and continued by its
electronic circuit generation. A key minimal requirement
in most systems is that two waves of chaotic signals are
synchronized, either exactly or approximately, and often
this has been found difficult to achieve. The possibility of
using pairs of lasers which can be synchronized, at least to
a good approximation, to generate identical pairs of waves,
has been demonstrated, [3], across an optical fiber network
in Athens, using laser diodes. In this early experiment the
encoding/decoding messages did not follow any of the
later well known forms of chaos communication, but
employed a simple form of additive masking. Thus when
synchronized and digitized laser waves became available
yielding 710 intensity pairs, of which 200 are illustrated in
Figure 1, there was an opportunity to use them in an
empirical investigation of a more sophisticated form of
chaos communication – a modified form of antipodal
chaos shift-keying (CSK) was chosen since it is possible to
derive the associated theoretical bit error rate (BER) under
ideal Gaussian assumptions and compare with empirical
results.

Figure 1. The solid line gives 200 of 10 million values from the laser at
the transmitter and the dotted line is the corresponding synchronized
wave generated by the laser at the receiver.

Initially, little was known about the statistical and
dynamical properties of such synchronized laser waves.
Thus, an initial task was an empirical study of the laser
waves and this showed them to be well-behaved
statistically and to be chaotic.

The data was then used empirically as input waves to the
antipodal CSK system. Bit error rates have been
calculated as a function of the amount of signal spreading
employed and have given the useful results reported here.
In contrast to conventional CSK systems, synchronization
error is important, and its statistical properties are found to
depart to some extent from a Gaussian assumption.
Further, in the experimental circumstances considered,
channel noise is absent, but theory is developed for its
inclusion. For laser-based communication, lasers are
imagined as being located at transmitter and receiver
stations and connected over an optical fiber network. At
the transmitter station the laser wave is broken into
segments so as to spread each bit transmission and each is
modulated in multiplicative binary way according its
encoded bit message; this becomes the received segment
after transmission. It is decoded at the receiver station by
using the corresponding synchronized but unmodulated
segment, in the manner specified by the communication
system in use, a correlation decoder here. A simpler CSK
system, known as on/off chaos shift-keying was
experimentally investigated in [4] with laser generated
chaos, and motivates the present investigation.
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2. Statistical Analysis of Laser Waves

The stored 10 million pairs of data used in this
investigation come from two synchronized distributed
feedback (DFB) lasers under a free-space optical
configuration. The two waves have been adjusted to have
zero mean and equal overall amplitudes. From the
illustration in Figure 1 it is seen that there is a high degree
of synchronization, and that there are more outlying
negative than positive values, indicating skewness in their
distributions. This behaviour and constant level is evident
across each entire series. The synchronization error wave
is of interest, but not shown, and is fairly balanced in its
positive and negative values. More information is revealed
by statistical plots. Figure 2 gives the scatter plot of the
two series showing the degree of synchronization, with
correlation of 0.947, while the histogram and its smoothed
version in Figure 3 show the skewed distribution of the
laser waves at the transmitter. Several other statistical
aspects were studied, such as auto- and cross- correlations
indicating directionality, mutual information, power
spectra, sequential variances giving further evidence for
stationarity, and phase coherence with strong value of
0.892. Thus, in summary of the statistical properties, they
were found to be stable and reasonably behaved, but
certainly not Gaussian, and neither were the individual
series linear in their dependency.

Figure 2. Scatter plot showing the degree of synchronization between the
stored laser waves generated at the transmiiter and receiver.

Figure 3. Histogram and smootherd histogram of the stored laser wave
generated at the transmitter relative to a Gaussian distribution .

3. Chaotic Dynamics Analysis of laser Waves

The waves emitted by lasers are believed to be chaotic and
thus useful in communications because of their
unpredictability and noise like properties. This is the
fundamental tenet of chaos-based communication systems,
such as CSK. Actually, the bit error performance theory of
such systems does not usually depend on such
assumptions, but rather on the statistical characteristics of
the chaotic waves. So both statistical and dynamical
aspects are important. However, the theoretical
assumptions that laser-generated waves realize chaotic
characteristics should be empirically established, and there
is scarce evidence in the literature. This is not surprising
since the numerical investigation of nonlinear dynamics is
delicate task, although with the advent of more software, it
is becoming more practical, as will be demonstrated.

The chaotic and dynamical properties of interest are the
time lag , the local dimension ,LD the Lyapunov
exponents , 1, 2,..., ,i Li D  and the embedding or global
dimension .ED An observed laser time series is
considered as a projection from a higher dimensional
space. In order to ascertain the nature of its governing
dynamical system, the space needs to be reconstructed.
This can be done as a ED -dimensional space using a time
lag delay technique, see [6] for instance. There are
several ways to ascertain the time lag, the two most
popular are the first time that the autocorrelation function
(ACF) of the signal crosses zero (Figure 4, perhaps also
indicating some periodicity), and the first minimum of the
average mutual information (AMI) of the signal (Figure 5).
When the choice is appropriate, there is strong preference
amongst practitioners for the mutual information
technique because it takes into account linear and
nonlinear dependency.

The local dimension LD is equal to the number of non-
trivial Lyapunov exponents calculable for the system, and
is obtained by calculating the attractor dimension, and
considering its ceiling. The maximum of the Hausdorff,
information, and correlation dimensions were used to
obtain the attractor dimension and the ceiling was found
to be 4LD  , [6].

Chaotic signals are characterized as emerging from
systems which are deterministic in nature but are sensitive
to their initial conditions, [7]. Lyapunov exponents are a
way of quantifying this sensitivity to initial conditions
because they signify the exponential rate of divergence
between two nearby points in a dynamic system; a
positive exponent implies that points are diverging away
from each other at an exponential rate and this is used to
signify a process that is unstable or chaotic.
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Figure 4. Autoorrelations of the stored laser wave generated at the
transmitter, with first negative crossing appearing lag 4.

Figure 5. The average mutual infomation of the stored laser wave
generated at the transmitter, with first minimum appearing at lag 3.

Figure 6 shows the output of the calculation for the
Lyapunov exponents of the laser wave generated at the
transmitter. Two positive and two negative Lyapunov
exponents were calculated, with error bars, showing that
they were not just chaotic but hyperchaotic, [6], since they
possessed more than one positive exponent. Their sums
were negative, confirming that the dynamical system is
indeed stable.

Obtaining a reliable value for the minimal embedding
dimension is difficult and many techniques have been
advocated. The two most popular, false nearest strand and
false nearest neighbour [12], [13], where found to be
inconsistent and unreliable for this purpose. Therefore it
was decided to use the fractal delay embedding prevalence
theorem [12] and hence obtain 2 1 9E LD D   .

The open source statistical package R [8] was used to
carry out all the calculations and the various sub-packages
used within R were: the fractal package [9] for calculating
the Lyapunov exponents, the fdim package [10] for false
nearest neighbour and false nearest strands for carrying
out the attractor dimension calculations, and the tseries
chaos package [11] for calculating the mutual information.

4. Chaos Shift-keying Using Laser Transmissions

There are several variants of chaos shift-keying systems
for binary bit transmission, with the main distinction
being between those which modulate and transmit a single
chaotic wave (the antipodal version) and those which

Figure 6. Lyapunov exponents of the stored laser wave generated at the
transmitter assuming an embedding dimension of 9.

transmit one of two chaotic waves (the binary version)
according to the bit value being transmitted. In the
antipodal version, the one used in modified form here,
both the transmitted modulated wave and the
synchronized unmodulated wave are both available at the
receiver. For ease of reference to the standard CSK
versions, see [5].

For the present laser-based antipodal version of CSK,
let 1 2{ , ,..., }NX X X be a typical segment of N successive
values of the chaotic laser wave generated at the
transmitter, adjusted if necessary to have zero mean, and
with variance 2 ;

X
 Let the binary bit 1b  be

multiplicatively spread over the N successive values at the
transmitter, the so-called spreading segment. In the
experimental generation of the synchronized laser waves,
as illustrated in Figures 1 and 2 there is no transmission
noise. However, in communication use, additive
transmission noise can be anticipated. Thus, the received
message wave segment will be represented as

, 1, 2,...,
ii iR bX i N   (1)

where 1 2( , ,..., )N  is transmission noise, assumed to be
Gaussian with variance 2

 . The synchronized wave

1 2
( , , ..., )

N
S S S is generated at the receiver but this is

subject to laser-induced synchronization error, as
illustrated by the stored wave data in Figure 2; it is
modelled as

, 1, 2,...,i i iS X i N    (2)

where  is a scaling constant which equalizes the
amplitudes. It can be found by a preliminary regression
analysis, using the stored waves. The 1 2( , ,..., )N  are
the synchronization errors; thus 0  corresponds to
perfect synchronization. Decoding of the binary message
b is an operation of statistical estimation and in CSK
systems is routinely carried out by correlation decoding
according to

1
ˆ, 0 1, 1

N

i ii
R S b


    . (3)
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It can be justified as maximum likelihood estimation of b
when the synchronization errors are Gaussian and the
transmission noise is zero.

The bit error of the correlation decoder with zero
transmission noise, as with the present experimental data,
is a small mathematical generalization of earlier CSK
theory, such as in [5], and is

( )BER N 

 1 2 2
1

N

X i Xi
E N N X   


       . (4)

All quantities in this expression except for N are set
according to the laser hardware and thus BER is a function
only of spreading length N. Unlike other CSK systems it
does not involve a signal-to-noise ratio. Near exact
calculation of (4) is undertaken by simulation of its
expectation using the stored transmission laser wave
divided into spreading segments of lengths 2,3,...N  .
The actual BER is obtained as the frequency of errors when

1b  is transmitted, also using spreading segments from
the stored transmission wave, and is illustrated in Figure 7.
There is encouraging agreement between the two curves,
although less so at extensive spreading, the effect of the
imperfect assumption of additive Gaussian synchronization
error. There is an opportunity from (4) to investigate the
effect of synchronization error by varying  while
keeping N fixed at selected values.

When there is transmission noise  as well as
synchronization error, BER obviously increases, and its
mathematical derivation becomes more complicated.
Performance is now affected by the signal-to-noise ratio

 2 210log .XSNR N   The communication system is
actually close to non-coherent CSK allowing the theory in
[5] to be extended. An expression for the BER can be
reported as

 
2

1 1
1

1
2

N

X i ii
BER E P U X   



       


 
2

1 1

1

1
1

2
N

i ii
V X   



       
 , (5)

where the ,i iU V variables have independent and
standardized Gaussian distributions. Thus, the stored
transmission wave allows BER to be calculated
empirically using (5) for any chosen N. The choice of 
is based on any desired signal-to-noise ratio

 2 210log .XSNR N   The result (5) can be cast in

terms of a doubly non-central F-distribution. Lower
bounds in terms of N can be also be deduced. These
associated results and enhanced synchronization
modelling will be more fully reported elsewhere.

Figure 7. The BER of antipodal coherent CSK as a function of
spreading using synchronized laser waves; dotted curves are empirical
values, dashed curve correspond to theoretical values based on equation
(4).
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