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Abstract—The two most popular classifications of 1D
elementary Cellular Automata rules are based on the dy-
namics of the so-called robust ω-limit orbits, which can be
observed when a long random bit string is used as initial
state. In this paper, we introduce a classification that takes
into account also the dynamics of the non-robust ω-limit
orbits, which can be observed only for very specific initial
states.

1. Introduction

Cellular automata (CA) are a classical example of how
interdependent elementary structures can generate complex
dynamics. In the last few years, this topic has been success-
fully addressed by using the theory of Nonlinear Dynam-
ics [1], which considers CA as a special case of Cellular
Nonlinear Networks (CNNs). One of the main results of
such approach has been the introduction of a new classifica-
tion of CA rules that is based on the notion of ω-limit orbit,
which we will introduce later in this paper. Such classifica-
tion is based on quantitative criteria, and it differs from the
popular one proposed by Wolfram [2] which rather consid-
ers qualitative criteria. Still, both Chua’s and Wolfram’s
classifications are based on the so-called robust ω-limit or-
bits while they ignore the dynamics of so-called non-robust
ω-limit orbits. In this paper, we propose yet another clas-
sification of the CA local rules, but in this case based on
the properties of both the robust and the non-robust ω-limit
orbits.
The paper is structured as follows: in Sec 2, we intro-
duce some fundamental concepts of Cellular Automata; in
Sec. 3, we discuss both Chua’s and Wolfram’s classifica-
tions; in Secs. 4 and 5, we present several examples con-
cerning the robust and the non-robust ω-limit orbits, re-
spectively; in Sec. 6, we draw the conclusions.

2. Brief notes on Cellular Automata

Cellular Automata consist of regular uniform lattice of
cells assuming a finite number of states; here, we consider
one-dimensional CA in which cells are arranged in an array
of length L = I + 1 and can take only two states: 0 and 1.
For instance, a bit string x at the generic time step n is

xn = (xn
0xn

1 . . . xn
I−1xn

I ) (1)

where the subscript indicates the position of the cell in the
array. Hereafter, letters in bold indicate bits strings, and
letters in italics are used for the single bits.
Cells are updated synchronously and the time evolution of
a bit string can be effectively summarized by the notation

xn+1 = f (xn) (2)

in which the superscript indicates the iteration. The state
of each cell at iteration n + 1 depends on the states of its
neighbors (here we consider only the nearest neighbors) at
iteration n:

xn+1
i = f (xn

i−1xn
i xn

i+1). (3)

In the following, we use periodic boundary conditions,
which means that

xn+1
0 = f (xn

I xn
0xn

1) and xn+1
I = f (xn

I−1xn
I xn

0) (4)

Under the restrictions detailed above, there are only 256
possible functions f , called rules, which we can be denoted
by f0 up to f255. For instance, the notation:

xn+2 = f110( f110(xn)) (5)

indicates the application of rule 110 to the bit string xn two
times to obtain the bit string xn+2.
If the functions fi are deterministic and the length L of the
bit string is finite, then the evolution of an arbitrary initial
state under an arbitrary rule fN will end up in a periodic
orbit, in the sense that there exist p and T such that

xp = xp+T (6)

Obviously, xp′ = xp′+T , for all p′ > p. The bit strings
from x0 to xp−1 are said to belong to the transient, which
has length p, while the bit strings from xp on are said to
belong to the periodic orbit, which has length T . In this
paper, we have opted for the terminology ω-limit orbits
borrowed from classical nonlinear dynamical systems [3].
Even though the classical usage of the word orbit allows it
to be the entire trajectory (both transient and steady state),
the definition of ω-limit orbit requires it to be periodic for
finite L. For this reason, in our terminology the ω-limit or-
bit excludes the transient part of the orbit and, for finite L,
it coincides with the periodic orbit.
For some rules, it may happen that the there exists a τ for
which:

xp = Sσ(xp+τ) (7)
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where Sσ indicates a shift, left or right, by σ positions,
where conventionally σ is positive for left shifts and nega-
tive otherwise. Therefore, an ω-limit orbit can be charac-
terized by its parameters τ > 0 and |σ| ≥ 0.
Since it is unfeasible to analyze the evolution of CA rules
starting from all 2L possible initial states when L is big,
researchers use long (e.g., L greater than 100) random ini-
tial bit strings to characterize the behavior of a rule, as ex-
plained in detail in Sec. 3. The ω-limit orbits found via
this procedure are said to be robust because they can be
observed starting from a generic initial state. Rules can
also have some ω-limit orbits, called non-robust, that can
be reached only from some very specific initial states.

3. Classification of CA rules by Wolfram and Chua

3.1. Wolfram’s classification

Cellular Automata local rules can be grouped according
to many criteria, and several different classifications have
been presented so far [4] [5] [6] [7] [8] [9] [10] [11]. Prob-
ably, the most famous is due to Wolfram [2], who proposed
to classify CA local rules into four classes (here labeled
from ‘W1’ to ‘W4’), depending on the evolution of the sys-
tem from a random initial state:

• W1: evolution leads to a homogeneous state;

• W2: evolution leads to a set of separated simple stable
or periodic structures;

• W3: evolution leads to a chaotic pattern;

• W4: evolution leads to complex localized structures,
sometimes long-lived.

On the one hand, this classification can be applied to any
Cellular Automaton model, regardless the number of states,
spatial arrangement, neighborhood etc.; on the other hand,
it has received criticism for being based on empirical crite-
ria (e.g., see [12]).

3.2. Chua’s classification

An alternative classification scheme composed by six
different groups (labeled from ‘C1’ to ‘C6’) was proposed
by Chua in [1]. In this case, the feature used to discriminate
the rules is the robust behavior of the ω-limit orbits found
by using random bit strings:

• C1: rules exhibiting robust period-1 ω-limit orbits;

• C2: rules exhibiting robust period-2 ω-limit orbits;

• C3: rules exhibiting robust period-3 or period-6 ω-
limit orbits;

• C4: rules exhibiting robust στ-shift ω-limit orbits,
where σ and τ do not depend on the initial bit string
or the length L;

• C5: bilateral local rules exhibiting a robust στ-shift
ω-limit orbits, where σ and τ depend on the initial bit
string and/or the length L;

• C6: non-bilateral local rules exhibiting a robust στ-
shift ω-limit orbits, where σ and τ depend on the ini-
tial bit string and/or the length L.

Some examples of spatial-temporal patterns generated by
the rules belonging to the different groups are displayed in
Table 1.

Table 1: Examples of spatial-temporal patterns obtained
from a single black pixel for six different rules and the clas-
sifications according to Wolfram (W) and Chua (C), as de-
scribed in Sec. 3: (a) Rule 0, W1 and C1; (b) Rule 51, W2
and C2; (c) Rule 62, W2 and C3; (d) Rule 170, W2 and C4;
(e) Rule 90, W3 and C5; (f) Rule 110, W4 and C6.

(a) (b) (c)

(d) (e) (f)

3.3. Relationship between Wolfram’s and Chua’s clas-
sifications

These two classifications are related to each other: rules
belonging to W1 are a proper subset of those of C1; rules
belonging to W2 can be in any of the Chua’s groups from
C1 to C4; finally, rules belonging to W3 and W4, can be
either in C5 or in C6, depending on their characteristics.
Therefore, we can summarize these results as follows:

W1 ⊂ C1
W2 ≡ ((C1\W1) ∪ C2 ∪ C3 ∪ C4)

(W3 ∪W4) ≡ (C5 ∪ C6)

We ought to emphasize that Chua’s classification has been
expressly developed for 1D elementary CA, and hence it
could be different for other models (e.g., more states, dif-
ferent neighborhood), while Wolfram’s classification can
be applied without changes independently of the particular
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CA model under consideration.
Obviously, the presence of non-robust ω-limit orbits is pe-
culiar to rules of W1 and W2, in Wolfram’s classification,
and of C1, C2, C3, and C4, in Chua’s classification, since
the classes W3, W4, C5, and C6 are characterized by the
fact of not having a dominant, i.e., robust, kind of orbit.

4. Results on the robust ω-limit orbits

An exhaustive analysis of all CA rules has led to the
conclusion that all globally-independent local rules have at
most two robust ω-limit orbits. In particular, the rules of
C5 and C6 do not have any robust ω-limit orbit, by defi-
nition; rules 14, 43, 57, 142, 184 (all of them belonging to
C4) have two robustω-limit orbits; all other rules have only
one robust ω-limit orbit. The rules of the first four groups
in Chua’s classification can be grouped according to their
values of the Bernoulli parameters σ and τ, as shown in
Table 2. In particular, the rules of C1, C2, and C3 are in
the first column, because they are periodic in time but not
in space and hence σ = 0, while the rules of C4 (so-called
Bernoulli rules) have σ , 0 since they are periodic in space
and time.

Table 2: Distribution of the rules of the first four classes in
Chua’s classification according to the values of σ and τ of
their robust ω-limit orbits. All these rules belong either to
W1 or to W2 in Wolfram’s classification.

σ = 0 |σ| = 1 |σ| = 2
τ = 1 C1 C4
τ = 2 C2 C4 C4

τ = 3 and τ = 6 C3

Observe that no Bernoulli rule has robust ω-limit orbits
with τ > 2. Also, no rule can have robust ω-limit orbits
with |σ| > τ because this would imply that the information
travels in space faster than one bit per iteration, which is not
possible in our nearest-neighbors model. Nevertheless, in
the examples displayed in Table 3 (a), (b), and (d) the infor-
mation apparently travels faster than one bit per iteration,
but this effect is due to particular spatial configurations that
can occur only in non-robust periodic orbits.

5. Results on the non-robust ω-limit orbits

Both Wolfram’s and Chua’s classification are based on
the results obtained by using one or more long random bit
strings as initial state, but this method allows us observe
only the robust ω-limit orbits, as explained in Sec. 2. How-
ever, as already pointed out in [13, 14] there exist rules
whose robust ω-limit orbits are ‘dull’, while their non-
robust ω-limit orbits exhibit a variety of interesting dynam-
ics.
For example, Rule 164 is W2 and C1, and hence they are

not considered ‘interesting’ in such classifications. A sim-
ilar situation happens for Rule 37 which is W2 and C2.
However, both these rules have a non-robust ω-limit orbit
with τ = 3 and σ = 1 for L=14, as it can be observed in
Table 3. Other two examples are given by Rules 9 and 25,
both of them W2 and C4, which have non-robust ω-limit
orbit with σ = 2 and σ = 3, respectively, and τ = 3.

Table 3: Examples of non-robust ω-limit orbits with τ = 3:
(a) Rule 164, W2 and C1 (σ = 1); (b) Rule 37, W2 and C2
(σ = 1); (c) Rule 9, W2 and C4 (σ = 2); (d) Rule 25, W2
and C4 (σ = 3).

(a) (b)

(c) (d)

Many of the 70 globally-independent rules belonging to the
first two Wolfram’s groups (or, equivalently, to the first four
Chua’s group) have only one kind of orbit. For example, all
ω-limit orbits of Rule 76 are period-1, and all ω-limit or-
bits of Rule 162 have τ = 1 and σ = 1. However, this
is not always the case: some rules have orbits with both
τ = 1 and τ = 2. Remarkably, there are a few rules –
namely, 9, 25, 37, 74, 94, 164 – having non-robust orbits
with τ = 3. The reason why such a feature is so interesting
is that a classical work [15] in Nonlinear Dynamics proofs
that in a continuous function defined over an interval, the
presence of a period-3 orbit implies the presence of orbits
with any other period. Obviously, this result does not apply
directly to Cellular Automata because, in general, they de-
scribe discontinuous functions. Nevertheless, we noticed
that all rules in the last two groups of Chua’s classification
have at least one periodic orbit with τ = 3 and, at the same
time, the five rules with τ = 3 mentioned above tend to
have a more complex behavior than the remaining of the
first four groups of Chua’s classification. For instance, in
Table 4 orbits with τ > 3 for two of the five rules aforemen-
tioned are displayed. Therefore, somehow the parameter
τ = 3 may give an indication of richer dynamics, as also
confirmed by the analysis made by using other methodolo-
gies [16].
For this reason, besides the classification of rules accord-
ing to their robust orbits, as done by Wolfram and Chua,
we suggest a classification based on their non-robust or-
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Table 4: Examples of non-robust ω-limit orbits with τ
greater than 3: (a) Rule 9 , with τ = 5 and σ = 0; (b)
Rule 164, with τ = 7 and σ = 7.

(a) (b)

bits. In particular, we can distinguish three classes: i) rules
with only robust ω-limit orbits; ii) rules whose non-robust
orbits have τ = 1 and/or τ = 2; iii) rules whose non-robust
orbits have τ ≥ 3. This last group contains at least one rule
from each of the first four Chua’s groups.

6. Conclusion

In this paper, we propose a classification of the CA local
rules based on the properties of both robust and non-robust
ω-limit orbits. Thanks to this new approach, we found that
some rules belonging to C1, C2, C3, and C4 – or, equiva-
lently, to W1 and W2 – have at least some ω-limit orbits
with characteristics similar to those of the rules belong-
ing to C5 and C6 – or, equivalently, to W3 and W4. This
result opens a new scenario to analyze the computational
properties of Cellular Automata: some rules that have been
considered ‘uninteresting’ so far become suddenly rich in
dynamic behaviors, still to be studied.
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