
Interactions Between Propagating Wave Phenomena in a Large Number of
Coupled Bistable Oscillators

Kuniyasu SHIMIZU†, Hayato SUZUKI†

†Dept. of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Japan
2-17-1, Tsudanuma, Narashino, Chiba 275-0016, Japan

Email: kuniyasu.shimizu@it-chiba.ac.jp

Abstract—Different types of propagating waves can
emerge in a simple model of inductor-coupled bistable os-
cillators. In this study, we numerically investigate inter-
actions between the propagating wave phenomena in the
coupled bistable oscillators. The propagating waves are
reflected when one of the coupling parameter values in the
oscillator array is changed. Various interactions between
the two propagating waves in the 16 coupled oscillators
are shown.

1. Introduction

Propagating wave phenomena emerge in wide variety
of dynamical systems, and attract considerable attentions.
Examples include the propagating waves in FitzHugh-
Nagumo dynamics [1], in reaction-diffusion system [2],
and in micro-electro mechanical systems [3, 4]. Because
the dynamical systems correspond to a class of nonlinear
coupled oscillators, a study of propagating wave phenom-
ena in a nonlinear coupled system is significant.

In our previous study [5], we numerically studied a ring
of six-coupled bistable oscillator system, and confirmed
that various propagating waves occur though a global bi-
furcation of map based on heteroclinic tangle. Kamiyama
et al. succeeded in distinguishing these propagating waves
as well as attractive quasi-periodic oscillations [6]. In ad-
dition, these propagating waves in six-coupled bistable
oscillators can be observed in an actual circuit experi-
ment [7].

The interaction of traveling excitations is a subject of
great interest [8]. In this study, we show that the traveling
direction of the propagating waves in larger number of os-
cillators can be changed by varying the coupling strength
at a particular site of the oscillator array. The results im-
plies that it is natural to assume that multiple propagating
waves emerges in the coupled system. We numerically
investigate the interaction between the two propagating
waves moving the opposite direction with each other. In
particular, we use a coupling factor as a control parameter
and pay attention to interaction for two distinctive propa-
gating waves previously reported in the literatures [7].

2. Inductor-coupled bistable oscillators

Figure 1 shows one-dimensional array of inductor-
coupled bistable oscillators. An individual bistable oscil-
lator (Ok, k = 1, 2, . . . ,N) comprises an inductor (L), a
capacitor (C), and a nonlinear conductance (NC). These
oscillators are connected by inductors (L0). When the
voltage–current characteristics of NC are assumed to be
written by the fifth-order polynomial: ikNC = g1vk −
g3v3

k + g5v5
k , g1, g3, g5 > 0, the individual oscillator has

two steady-states: a stable focus and a limit cycle oscilla-
tion [7].

From Kirchhoff’s law, the circuit equation of Fig. 1 is
written as

d2vk

dt2 +
g1

C

(
1 − 3g3

g1
v2

k +
5g5

g1
v4
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)
dvk

dt
+(

1
LC
+

1
L0C

)
vk −

1
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(vk+1 − vk + vk−1) = 0,

k = 1, 2, . . . ,N (v0 = vN , vN+1 = v1).
(1)

Substituting

t =
√

LCτ, vk =
4
√

g1/5g5 xk,

ε ≡ g1
√

L/C, α ≡ L/L0, β ≡ 3g3/
√

5g1g5,
(2)

into Eq. (1) yields the following normalized equation:

ẋk = yk,
ẏk = −ε(1− βx2

k + x4
k)yk − xk + α(xk−1 − 2xk + xk+1),

(· = d/dτ).
(3)

The parameter ε indicates the degree of nonlinearity,
whereas α is the coupling factor. The parameter β deter-
mines the amplitude of oscillation.

In our previous work [5, 7], we use the different nor-
malized parameters: ε′ = g1/

√
(C/L) + (C/L0), α′ =

L/(L+ L0). In the circuit experiments, we recognize a dif-
ficulty that a key parameter for the observed phenomena
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becomes confusing by using the parameters. In particu-
lar, with the parameters, the value of coupling inductor
L0 changes both values of parameters. Therefore, in this
study, we use the normalized parameters in Eq. (2).

In the following results, we use the parameter values
ε = 0.447 and β = 3.2 to compare the results in Ref. [7],
and integrating Eq. (3) by using a fourth-order Runge-
Kutta method with step size 0.01.

Figure 1: Circuit diagrams of a large number of coupled
bistable oscillators.

3. Interactions between propagating waves

Several types of propagating waves, where a spatiotem-
porally localized excitation propagates in one direction
with constant speed, exist in the inductor-coupled bistable
oscillators [7]. When we set the coupling strength at a
particular site of the oscillator array much larger or much
smaller than the all other α, the propagating waves are cor-
rectly reflected at the site. Figure 2 shows the reflection of
two different types of propagating waves when we set the
coupling strength between x9 and x10 and between x9 and
x8 is a hundred times larger than that for all other oscil-
lators (α = 0.2). Comparing the trajectories on the phase
plane with those in Ref. [7], the two propagating waves in
Figs. 2 (a) and (b) are identical to those reported in the lit-
erature denoted by PW2 and PW3, respectively. In the fol-
lowing, for simplicity, we use the same notation to identify
the propagating waves. PW2 is generated through a global
bifurcation of maps based on heteroclinic tangle, and the
bifurcation point is near a pitch-fork bifurcation point of
a standing wave [5]. As far as our numerical calculations
are concerned, PW2 and PW3 appear around the differ-
ent pitch-fork bifurcation points of the distinctive standing
waves, namely αc = 0.1172 and αc = 0.1272, respectively.
Moreover, the reflection of PW2 is shown in Fig. 3, when
we use the coupling strength between x9–x10,8 is a hun-
dred times smaller than α = 0.2 for all other oscillators.
It is seen from the figure that the amplitude of x9 is al-
most zero, whereas those in Fig. 2 (a) undergoes a large
amplitude of oscillation.

The above results imply that the traveling direction of
the propagating waves can be easily changed by varying
the coupling strength at a particular site. Therefore, for a
large number of coupled oscillators, interaction between
the localized propagating excitation becomes a subject of
interest. We now pay attention to the interaction between
the propagating waves in the 16 coupled bistable oscilla-
tors.

Figures 4(a)–(d) show the 3D plots of the interactions
between the two PW2 moving the opposite direction for
α = 0.2, 0.18, 0.17, and 0.15, respectively. For α = 0.2,
PW2 disappears right after the first collision, whereas for
α = 0.15, the propagating waves survives and are reflected
successively at particular sites (around x4 and x12). More-
over, for the intermediate α, the spatiotemporally localized
excitations are observed as shown in Fig. 4 (b) and (c). For
larger α than 0.2, PW2 disappears without collision.

Next, we investigate the interaction between the two
PW3. In contrast with PW2, PW3 appears for wide range
of α greater than αc. In addition, almost same interaction
phenomenon for α is observed for PW3. Figures 5 show
the 3D plot and the corresponding time series of xk for
α = 0.2, respectively. It is seen that the successive re-
flection of the two propagating waves occur. Comparing
with the results in Fig 4 (d), xk at the points of collision
oscillate with large amplitude of oscillation.

4. Concluding remarks

We numerically investigated propagating waves and
their interaction in sixteen inductor-coupled bistable os-
cillators. It was shown that the traveling direction of the
propagating waves is changed by varying the coupling
strength at a particular site of the oscillator array. Further-
more, we observed the interaction for the two distinctive
propagating waves by changing the coupling strength of
the oscillator array.
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(a) PW2.
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(b) PW3.
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(c) Trajectories on the phase plane
of (a).
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(d) Trajectories on the phase plane
of (b).

Figure 2: Reflection of propagating waves. the coupling
strength between x9 and x10 and between x9 and x8 is a
hundred times larger than that for all other oscillators (α =
0.2).
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Figure 3: Reflection of propagating wave PW2, when the
coupling strength between x9 and x10 and between x9 and
x8 is a hundred times smaller than that for all other oscil-
lators (α = 0.2).

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
 0

 150

 300

 450

 600

 750

 900

 1050

 1200

 1350

 1500

 0

 1.5

 3
|xk|

Oscillator Number k

τ

|xk|

 0

 0.5

 1

 1.5

 2

 2.5

(a) α = 0.20.
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(b) α = 0.18.
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(c) α = 0.17.
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(d) α = 0.15.

Figure 4: 3D plot of interactions between two PW2 mov-
ing the opposite direction with each other for four values
of α.
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(a) 3D plot.
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Figure 5: Interaction between two PW3 moving the oppo-
site direction with each other for α = 0.2.
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