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Abstract—
In a general sense, binding is dynamical coupling be-

tween distant regions in the brain. Although its detailed
mechanism has not been well understood, it is suggested
that binding can be perceived from the dynamical sys-
tem’s viewpoint. In order to examine the binding mech-
anism from this standpoint, here we propose a meso-scopic
model that describes each region’s dynamics abstractly.
The model is characterized by the following two points: (1)
Spatio-temporal patterns of regional activities are symboli-
cally represented by simple limit-cycle orbits, and (2) bind-
ing is realized as a form of mutual excitation among these
orbits. Preliminary numerical simulations show that vari-
ous patterns of binding can be generated. Furthermore, at-
tractor switching is also observed according to conditions.
This study supports the idea that the dynamical system’s
point of view is effective to understand binding mechanism
as well as other brain functions.

1. Introduction

In the neocortex, each region is known to be involved
in different functional roles. Therefore, when distant re-
gions need to exchange information, dynamical coupling
between them have to be formed depending on the situa-
tion. This is called binding. The mechanism of binding
is one of the important issues in neuroscience, which is
widely known as the binding problem[1].

To understand binding, it is suggested that the dynami-
cal system’s point of view is important [2, 3](see Fig. 1).
In this viewpoint, binding is regarded as a kind of attrac-
tor. Particularly, to distinguish it from attractors localized
within a small region, sometimes such a cross-region at-
tractor is also called a global attractor[2, 3]. Although this
viewpoint gives us a qualitative and abstract explanation
for binding, the direct correspondence to detailed biologi-
cal phenomena is difficult to argue.

In this study we propose a mathematical model to ex-
plain binding from the dynamical system’s viewpoint.
Generally speaking, there are various levels of mathemati-
cal models of the brain. Commonly used are neuron-level
models such as Hodgkin-Huxley model, leaky integrate-
and-fire model, Izhikevich model, and so on. More detailed
models are also used such as multi-compartment models

or models those consider even the channels’ distribution.
On the other hand, other models put together a group of
neurons and describe the abstract dynamics of the whole
system[4, 5]. In distinction from former models, we call
the latter meso-scopic models in this paper.

Meso-scopic models are suitable to show the relation-
ship between binding and the concept of attractors. First,
binding is essentially meso-scale phenomena, and it is ex-
plained qualitatively and abstractly by the concept of at-
tractors. Additionally, since much about the detailed bio-
logical mechanism of binding is not known, micro-scopic
models may require numbers of additional assumptions.
For these reasons, we decide to use a meso-scopic model.

2. Model

Let N denotes the number of regions under considera-
tion. In the following sentences, we call them nodes. Each

Figure 1: Meso-scale dynamics of the brain from the dy-
namical system’s viewpoint. (left) A small region in the
brain that contains thousands or millions of neurons is un-
der consideration. If this region is seen as a dynamical sys-
tem, the spatio-temporal patterns of the activities of neu-
rons within the region, i.e., oscillation modes or sustained
firing patterns, correspond to different attractor orbits. No-
tice that this figure is about the phase space, not the physi-
cal space. (right) It is said that binding can be interpreted as
an attractor that involves multiple regions[2, 3]. Inversely,
when the interaction between regions are sufficiently weak
so that they behave as if they are isolated systems, the re-
gions are unbinded.
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node has a M dimensional state xi ∈ RM (i = 1, . . . ,N).
The whole system’s state is denoted by X = {x1, . . . , xN},
and Xi = X \ {xi}. Then, the dynamics of each node is
described as follows:

dxi
dt = f i(xi; Xi) + Dηi, (1)

where f i : RM → RM is the flow in the phase space, which
is time-varying due to the influence of other nodes Xi. Next,
ηi ∈ RM is the noise term. For simplicity, uncorrelated
homogeneous white noise is assumed. The parameter D ∈
R determines the noise level.

Every node has K attractor orbits C1
i , . . . ,CK

i (i =
1, . . . ,N). Assume that no two orbits are intersected each
other. To extend the previous study where all attractors are
equilibrium point attractors[5], in this study simple limit-
cycle orbits are used.

First, let us consider the flow below. This has a stable
limit-cycle attractor in the M = 3 dimensional phase space:
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The square of the distance from a point x = {x1, x2, x3} to
the limit-cycle orbit C = {{x1, x2, x3} | x2

1 + x2
2 = 1, x3 = 0}

is,

a(x,C) = (1 −
√

x2
1 + x2

2)2
+ x2

3. (3)

Next, by randomly Affine transform the flow f , we make
K flows for each node f 1

i , . . . , f K
i (i = 1, . . . ,N) as follows:

f k
i (xi) = (Ak

i )T f (Ak
i xi + bk

i ), (4)
a(xi,Ck

i ) = a(Ak
i xi + bk

i ,C), (5)

where f k
i : R3 → R3 is the flow that correspond to the orbit

Ck
i . Next, Ak

i ∈ R3×3 and bk
i ∈ R3 are matrix and vector for

the Affine transformation, respectively. For simplicity, we
assume that Ak

i has only rotational component, and there is
no scaling. Therefore, det Ak

i = 1 and (Ak
i )−1
= (Ak

i )T.
The output of each node yi = {y1

i , . . . , yK
i } (i = 1, . . . ,N)

is described by softmax function of the values of a(xi,Ck
i ):

yk
i =

exp(−β(a(xi,Ck
i )))

∑K
l=1 exp(−β(a(xi,Cl

i)))
, (6)

where β ∈ R is a parameter that determines the steepness
of softmax function. Notice that the output yi is a natural
extension of that of single neuron. As if a single neuron dis-
criminates two classes, a node in this model discriminates
K classes.

The inputs from other nodes are weighted and summed
up, then influence the flow of each node f i as follows:

f i(xi; Xi) =

N
∑

j=1

K
∑

k=1

K
∑

l=1
wi jklyl

j f k
i (xi), (7)

where weight wi jkl ∈ R means a degree how f k
i is enforced

when node j’s state x j is close to the orbit Cl
j. Therefore,

Eq. (1) can be regarded as a continuous relaxation of a dy-
namical system with switching. In other words, dominant
dynamics switches continuously depending on the input
from the other nodes. In fact, in the limitation of β → ∞,
the dynamics of each node switches discontinuously.

3. Simulations and Results

In the following test simulations we study the case of
N = 3. For each node K = 5 limit cycles are randomly
located (see Fig. 2). Then, we assign correspondence re-
lations between orbits, which are represented by colored
arrows in Fig. 2. According to the relations, we determine
the value of weights wi jkl as follows. If a pair of orbits
Cl

j and Ck
i has a directional relation from C l

j to Ck
i , weight

wi jkl is set to 1. If not, it is set to 0. Level means the num-
ber of nodes necessary to sustain the attractor. Therefore,
level L ≥ 2 attractors correspond to binding, and level 1 at-
tractors are local regional ones. Each node has one level-1
orbit, two level-2 orbits, and two level-3 orbits.

At first, we investigate the simplest case where D = 0
and β is sufficiently large. A typical model’s behavior in
this case is shown in Fig. 3. Each node’s state stays mov-

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

L e v e l  1

L e v e l  2

L e v e l  3

Figure 2: (top) An example of limit-cycle orbits randomly
located in the M = 3 dimensional spaces. (bottom) Corre-
spondence relations between orbits. The numbers indicate
node indexes. Colored circles denote limit-cycle orbits, and
arrows indicate the relations between orbits (see the text).
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ing on a particular orbit. The value of output yi is nearly
constant, but it changes sharply where the state approaches
other orbits. When the initial condition is changed, various
patterns of attractors are seen. These include three level-1
attractors, combination of level-1 and level-2 ones, and a
level-3 one.

Next, under different parameter settings, attractor
switching is also observed as shown in Fig. 4. Each node’s
state moves on multiple orbits alternately. Switching is
likely to occur where orbits get close. Comparing different
levels of attractors, level-3 attractors appear with relatively
high frequency in a wide rage of parameters, followed by
the combination of level-1 and level-2 attractors. The pat-
tern of three level-1 attractors is far less frequent.

Next, we investigate the effect of the two parameters D
and β independently. If D increases, the system’s behavior
becomes similar to the random walk as shown in Fig. 5.
On the other hand, if β decreases, the trajectory of solution
gets complexly distorted. However, the maximal Lyapunov
exponent in this case is not positive.

To evaluate the effect of the parameters more system-
atically, we consider the instantaneous entropy H[yi] =
−
∑K

k=1 yk
i ln yk

i and estimate its time average < H[yi] > and
variance < (H[yi]− < H[yi] >)2 > (see Fig. 6). In all cases
the analyzed statistics show single peaks. Furthermore, the

Figure 3: An example case where binding is stably main-
tained. Node 1 and 2 are trapped in a level-2 attractor (light
green), and the remaining node 3 is in a level-1 attractor
(yellow). The simulation condition is D = 0, β = 200.

Figure 4: An example case where attractor switching oc-
curs. Multiple attractor orbits appear alternately. For ex-
ample, at t = 50 light green and yellow orbits are dom-
inant. They are followed by red one at t = 55 and then
green one at t = 65, and so on. The simulation condition is
D = 0.05, β = 20.

Figure 5: Effect of the parameters to the dynamics. (top)
A case of large noise (D = 0.5, β = 20). (bottom) A case
of small steepness of softmax function (D = 0, β = 10).
Transient behavior is cut-off in both cases.

- 606 -



0 0.1 0.2 0.3 0.4 0.5
0.00
0.05
0.10
0.15
0.20
0.25

Noise Level D

M
ea

n
O

fE
nt

ro
py

0 0.1 0.2 0.3 0.4 0.5
0.005
0.010
0.015
0.020
0.025
0.030

Noise Level D

Va
ria

nc
e

O
fE

nt
ro

py

1 10. 100. 1000.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Steepness Β

M
ea

n
O

fE
nt

ro
py

1 10. 100. 1000.
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Steepness Β

Va
ria

nc
e

O
fE

nt
ro

py

Figure 6: Plots of the statistics of instantaneous entropy
against parameter change. Error bars are the standard de-
viations of 10 trials. In each trial orbits are randomly re-
located, and the beginning 1000 steps are omitted in the
analysis. In the top row β is fixed to 200, and in the bottom
row D is fixed to 0.

the positions of the peaks are different between the mean
and the variance.

4. Discussions

First, attractor switching as shown in Fig. 4 may cor-
respond to the ongoing activity of the brain. In general,
the brain’s state changes continuously even when there is
no external input[6]. To interpret this from the dynamical
system’s viewpoint, the spontaneous activity of the brain is
itinerancy among multiple meta-stable attractors[2, 3]. Our
model is consistent with this idea.

On the other hand, the situation such as Fig. 3 may cor-
respond to that where selective attention works. In general,
selective attention is said to play an important role to form
a specific binding. To see this from the dynamical system’s
viewpoint, some sort of parameters are changed by atten-
tion, and the system’s dynamics turns to an ordered phase
where attractors are stably sustained[2, 3]. Our model is
also consistent with this idea that associates attention with
the concepts of bifurcation.

Similarly, the qualitative change of the system’s dynam-
ics in the real brain is sometimes argued in relation to phase
transition and self-organized criticality (SOC)[7]. In this
viewpoint, the brain’s dynamics is predicted to be maxi-
mally complex in the middle between totally ordered phase
and totally random phase. Our model is not fully consis-
tent with this idea because no scale-free property, which is
a relevant feature of SOC, is observed. However, the char-
acteristic peaks shown in Fig. 6 are some sort of supportive
evidences. Anyway, further discussion about this problem
may require more detailed studies in the future.

5. Conclusion

In this study, we have proposed a meso-scopic model
that describes regional dynamics of the brain abstractly
and examined the binding mechanism from the dynam-
ical system’s viewpoint. This study shows a possibility
that binding can be interpreted as a special attractor that
involves multiple regions. This suggests that both meso-
scopic modelling and the dynamical system’s viewpoint are
important to understand the function of the brain.

The next step of this research is to clarify the relation-
ship between binding and other important issues related to
it. For example, binding is suggested to have tight rela-
tions with selective attention, gamma oscillations, and neu-
romodulators such as acetylcholine[3]. Furthermore, some
psychiatric disorders can be related with some disorder of
binding mechanism. It is difficult but important to explain
these issues from the mathematical viewpoint.
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