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Abstract— A random number generation method based
on a bipolar-transistor cross-coupled chaotic oscillator is
introduced. Numerical model for the proposed design has
been developed where bootstrap method is used which al-
lows us to estimate the statistical characteristics of under-
lying chaotic signal. Numerical results, verifying the feasi-
bility and correct operation of the random number genera-
tor are given such that numerically generated bit sequences
fulfill FIPS-140-2 statistical test suite without any further
post-processing. Proposed random number generator fea-
tures much higher and constant throughput rates and allows
for offset compensation.

1. Introduction

In the 20th century, because of the increasing demand of
electronic official & financial electronic transactions and
digital signature applications, the need for information se-
crecy has raised. In this manner, as an unseparable part
of the secure systems, random number generators (RNGs)
which have been used for only military cryptographic ap-
plications in the past got expanding usage for a typical dig-
ital communication equipment.

Random Number Generators are used for a variety of
cryptographic applications and certain requirements on
such generators are outlined in [1]. Four different types
of random number generators are used in the literature and
these are categorized as: amplification of a noise source [1]
jittered oscillator sampling [2], discrete-time chaotic maps
[3] and continuous-time chaotic oscillators [4, 5, 6].

The use of discrete-time chaotic maps for random num-
ber generation is well-known [3]. It was shown recently
that continuous-time chaotic oscillators can also be used to
realize RNGs [4, 5, 6]. In particular, we have reported pre-
liminary results of a RNG using a novel continuous-time
chaotic oscillator in [6]. In this work we recall this chaotic
oscillator and further introduce the design of a RNG, which
relies on generating non-invertible random bit sequences
according to regional distributions from one of the wave-
form of the chaotic oscillator.

Furthermore, we develop numerical model for the pro-
posed RNG design where bootstrap method is used which
allows the estimation of statistical characteristics of under-
lying chaotic signal, thus provides determination of design

parameters for the chaotic source appropriately. Proposed
RNG offers some considerable advantages over the existing
ones [4, 5, 6]. In comparison with the previous design [6],
RNG introduced in this paper offers approximately sixfold
rate expansion and constant output rate.

Moreover, proposed RNG has some other technical ad-
vantages. For example, although the design is capable
of passing randomness tests without compensation, it al-
lows for offset compensation for bias removal thus provides
more robustness against external interference. Numerical
results verifying the feasibility and the correct operation of
the proposed RNG are presented such that numerically gen-
erated bit sequences fulfill FIPS-140-2 test suite [8] without
any further post-processing.

2. Cross-Coupled Chaotic System

In this paper, we use a simple cross-coupled chaotic system
as the core of the RNG, which was proposed in [6]. Rou-
tine analysis of the bipolar-transistor cross-coupled chaotic
circuit yields the state equations given in [6] which trans-
forms into the following equation by using the normalized
quantities:

X = a[e(xl"'xz) _ e(xz—xl)] -y
y=x-z

2z =y — 2z + btanh(x)

Xy = ¢ —a[et ) 4 )]

(D

where a = I;R/2Vy, b = IyR/2Vr, ¢ = 2Ig—1))R/2Vr, Vr
and /; are the bipolar transistor thermal voltage and satura-
tion current, respectively.

The equations in 1 generate chaos for different sets of
parameters. The chaotic attractor shown in Fig.1 is ob-
tained from the numerical analysis of the system with a =
0.5x 1075, b = 2 and ¢ = 1 using a 4"-order Runge-Kutta
algorithm with adaptive step size.

Exploited chaotic system offers some considerable ad-
vantages over the existing ones. Considering that the nec-
essary conditions for exhibiting chaos in an autonomous
system are at least three variables which correspond to
three energy storage components in implementation and
one nonlinearity, chaotic attractor consists of as few com-
ponents as possible. In conclusion, due to the absence of
large blocks such as analog multiplication stage, the core
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Figure 1: Numerical analysis results of the chaotic system
fora=0.5%x10"°%b=2andc=1.

chaotic system is simple and is easy to construct, which
make the usage of it suitable for practical RNG applica-
tions.

3. Chaos-Based Random Number Generator

The method, introduced in this paper for random num-
ber generation, relies on generating non-invertible bit se-
quences according to regional distributions from one of the
state of the chaotic system. It should be noted that non-
invertibility is a key feature for generating random num-
bers.

In this method, in order to obtain random bit sequences
from the chaotic attractor numerically, we used the periodic
samples of the state x; in Eqn. 1, obtained at the rising
edges of an external periodical pulse signal, that is at times
t satisfying wt mod 2n = 0 where w is the frequency of the
pulse signal. Note that, although 4-dimensional trajectories
in the x; — y — x, — z plane are invertible, one may obtain
a non-invertible section by considering only the values cor-
responding to one of the states, say x;.

We don’t know much about an irregular signal used to
generate random number but its distribution. At first, x;
values have been numerically generated and the distribu-
tion of periodic samples have been examined to determine
appropriate sections where the distributions look like ran-
dom signal. Although, we could not find sections of which
x1 values have a single distribution, we determined vari-
ous sections where the distribution of x; has at least two
regions.

Distribution of x; having two regions, suggests us to gen-
erate random binary data from regional x; values for re-
gional thresholds. Following this direction, we have gener-
ated the bit sequences S (opyi = SgR(X1i — Grop) When x1; >
dmiddle and S(bottom)i = Sgn(xli - Qbottom) when X1i < Gmiddles
where sgn(.) is the signum function, x;;’s are the values of
x1 obtained from one of the above defined section, g;,, and
Gpottom are appropriately chosen thresholds for top and bot-
tom distributions, respectively and gz is the boundary
between the distributions.

In the previous designs [4, 5, 6], the well-known Von
Neumanns deskewing technique is employed to eliminate

the bias. In this paper, on the contrary to [4, 5, 6], another
method (X) exclusive-or operation (XOR) is exploited in
order not to decrease the throughput. The potential prob-
lem with the exclusive-or method is that a small amount of
correlation between the input bits will add significant bias
to the output. The correlation coefficient of generated bit
sequences Sy, and S o0, of length 196 KBits is calcu-
lated as 0.00354 and it is determined that the generated bit
sequences are independent.

According to this result, we have generated the new bi-
nary data S (xori = S op)i ® S (bottomyi- Using the above pro-
cedure, unbiased and uncorrelated bit sequences S,,,.s have
been obtained from the regional x; values. Then these bit
sequences are subjected to the four tests (monobit, poker,
runs and long-run) of FIPS-140-2 test suite. Furthermore,
mathematical model of the proposed design has been de-
veloped, where bootstrap method is utilized to estimate the
statistical characteristics of underlying chaotic signal

It is noteworthy that, the XOR corrector is not a sophisti-
cated post-processor but a minor operation which sensibly
combines the top and the bottom sequences generated from
two regions which are separated according to distribution
of the underlying chaotic signal.

4. Numerical Verification Through the Bootstrap

In comparison with RNGs based on continuous-time
chaotic systems, the other common techniques [1, 2, 3],
seem to be advantageous in the sense that true random be-
haviors can be mathematically proven thanks to analytical
models that have been developed.

The numerical models used in [4, 5, 6], can provide intu-
ition about real RNGs, and can also lead to improved mod-
els for RNG randomness analysis. However, current nu-
merical models do not suffice to prove correct behavior of
the chaos based RNGs, and additional theory and analytical
methods are needed. If distribution of underlying chaotic
signal is known with its mean and variance then its proba-
bility density function serves a basis to its analytical model
of the generator. This then mathematically helps to prove
true random behavior of the generator. Development of a
general theory and associated analytical models for the ran-
domness analysis of chaos based RNGs are now the other
wide open problems.

In the last decade, the use of applicable, simple and more
accurate models has become a fundamental requirement in
signal processing applications, where the Gaussian distri-
bution assumption is not valid. A real solution for these
applications is the bootstrap. On the contrary to classi-
cal statistical analysis, which assumes that the data with a
large sample size available is Gaussian thus is inapplicable
to many signal processing problems, the bootstrap method
introduced by Efron, provides a rigorous metric for find-
ing confidence intervals for parameters such as variances
or probability distributions of parameter estimators, while
few observed data is available [7].
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This useful capability makes the utilization of bootstrap
method ideal for the numerical model of the proposed de-
sign where numerical data are finite, particularly short and
distribution of underlying chaotic signal is unknown. The
bootstrap method allows the estimation of statistical char-
acteristics such as bias, variance, distribution functions and
thus the estimation of confidence limits for parameters of
interest. Its paradigm suggests substitution of the unknown
probability model of the observed data in real world by
the estimated probability model of the bootstrap samples
in bootstrap world. Practically, bootstrap method approx-
imates the distribution by reusing the original data resam-
pled randomly with the corresponding statistics of interest,
instead of applying the central limit theorem by assuming
that the underlying distribution is Gaussian [7].

For the given a, b, and c values, the two regional distri-
bution of the state x; obtained for wt mod 2n = 0 is shown
in Fig. 2.
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Figure 2: Histogram of x; obtained from the autonomous
chaotic system for wt mod 2 = 0.

To be able to choose the thresholds appropriately, we ex-
amined top and bottom distributions as shown in Fig. 2
and then, thresholds g;,, and gpo0, Were determined as
the means of the top and bottom distributions which were
0.8808 and —0.8808, respectively while the boundary be-
tween the distributions g,;44. Was determined as 0.
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Figure 3: Confidence interval for the mean of top distribu-

tion.

We computed a sample of 10000 bootstrapped means of
random samples taken from the original data, and plotted
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Figure 4: Confidence interval for the mean of bottom dis-
tribution.

these bootstrapped means. As shown in Fig. 3 and 4, the
bootstrap method finds confidence intervals for the means
of top and bottom distributions as 0.8782 < mean,,, <
0.8837 and —0.8835 < meanponom < —0.8781, respectively.

In conclusion, we have numerically verified that the bit
sequence S ,,,, obtained for appropriate threshold values
which are inside the given confidence intervals, passed the
tests of FIPS-140-2 test suite without post-processing. Re-
sults for the uniformity of P-values [8] and the proportion
of passing sequences are given in Table 1 for g,,, = 0.8837
and gporrom = —0.8808, where P-value (0 < P — value < 1)
is a real number estimating the probability that a perfect
RNG would have produced a sequence less random than
the given sequence. It is reported that, for a sample size of
34 x 200008Bits, the minimum pass rate for each statistical
test with the exception of the random excursion (variant)
test is approximately 0.938808.

Table 1: FIPS-140-2 Statistical Test Results.

STATISTICAL S vor Bit S equence
TESTS P —Value | Proportion
Frequency 0.534146 0.9706
Block Frequency | 0.100508 1.0000
Runs 0.213309 1.0000
Longest Run 0.000163 1.0000

In order to analyze output randomness with different set
of threshold values and discuss their impact, the concept of
approximate entropy (ApEn) [8] was employed as a mea-
sure of randomness. On the contrary to classical statis-
tical tests, ApEn provides a rigorous metric for proxim-
ity to randomness of a single finite sequence, particularly
a very short sequence, without considering its underlying
source [8]. This useful capability makes the utilization of
ApEn ideal for the numerical model of the proposed de-
sign. Shannon Entropy could be also used in the given
model, however it should be noted that accurate calcula-
tion of Shannon Entropy requires the sequence to be infi-
nite. The use of ApEn is more appropriate for the devel-
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oped model where numerical binary sequences are finite.

Table 2: ApEn test results obtained for different threshold
values.

Threshold Values ApEn Test Results
Grop Gvoom | P — Value | Proportion ApEn

-0.8781 | 0.8837 | 0.000569 1.0000 0.687446
-0.8781 | 0.8808 | 0.804337 0.9706 0.687714
-0.8781 | 0.8782 | 0.468595 1.0000 0.687718
-0.8808 | 0.8837 | 0.804337 0.9706 0.687602
-0.8808 | 0.8808 | 0.534146 1.0000 0.687823
-0.8808 | 0.8782 | 0.862344 1.0000 0.687616
-0.8835 | 0.8837 | 0.066882 0.9706 0.687225
-0.8835 | 0.8808 | 0.253551 0.9412 0.687596
-0.8835 | 0.8782 | 0.299251 0.9706 0.687629

In conclusion, we have numerically verified that the
bit sequences S ,,,s, obtained for the given confidence in-
tervals, passed the ApEn test [8] for a sample size of
34 x 20000Bits where ApEn values and corresponding test
results are given in Table 2.

External interference is a major concern in RNG design
since interfered and random signals have comparable lev-
els. To solve this problem and to be robust against pa-
rameter variations and attacks aimed to force throughput,
we have proposed offset compensation loops that increase
the statistical quality of the generated bit sequences. Offset
compensations of g, and porom thresholds can be realized
by implementing monobit test of FIPS-140-2 test suite for
S top and S porom binary sequences. For each sequence, bit
streams of length 20000 bits are acquired, if the number of
0’s is greater than 10275 then corresponding threshold is
decreased and if the number of 0’s is less than 9725 then
corresponding threshold is increased until they reach and
become stable at the means of top and bottom distributions.

In the previous RNG design [6], numerical simulations
show that the system generates 209 bits per every 10,000
normalized time units after de-skewing while that is 1280
bits for the proposed design without any further post-
processing. In conclusion, this indicates that the proposed
design results in a sixfold rate expansion in comparison
with the previous design [6].

On the contrary to the other chaos based RNGs reported
in [4, 5, 6], RNG design proposed in this paper avoids
the need of further post-processing which significantly de-
creases the throughput. Another disadvantage of the pre-
vious designs [4, 5, 6] is the disability to realize necessary
offset compensation, which derives from the fact that in-
stead of raw bit sequences, processed sequences can pass
the statistical tests thanks to post-processing techniques.

As a result, in comparison with the previous RNGs
[4, 5, 6], RNG proposed in this paper is an enhanced de-
sign which features much higher throughput rates, allows
for compensation thus provides more robustness against
external interference, parameter variations and tampering

and fulfills the FIPS-140-2 statistical test suite without any
further post-processing.

5. Conclusions

A random number generation method based on a bipolar-
transistor cross-coupled chaotic oscillator is introduced
which offers much higher and constant throughput rates,
allows for offset compensation and fulfills the FIPS-140-
2 statistical test suite without any further post-processing.
Moreover, numerical models for the proposed design have
been developed which use bootstrap method allowing
the estimation of statistical characteristics of underlying
chaotic signals. Numerical results presented in this paper
not only verify the feasibilities and the correct operations
of the proposed design, but also encourage its use as the
core of a high-performance RNG as well.
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