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Abstract– All-to-all or randomly selected synaptic 

connections have been assumed for the network structure 

of most neural network models. However, it is thought that 

biological neural networks in the real brain are more 

heterogeneous such as "small-world" rather than 

homogeneous. This research aims to clarify the 

characteristics of spike propagation in a Pseudofractal 

scale-free neural network model with the scale-free and the 

small-world properties. The main feature of this model is 

that the number of synaptic connections from a neuron 

differs depending on the generation of the neuron. The 

results of computer simulations show that the difference of 

latency of spike propagation between the generations 

depends on which generation of neurons is driven by 

external stimuli. This reflects heterogeneous routes of 

spike propagation in the network. The result suggests the 

possibility that different information processing is 

activated by different driven neurons. 

 

1. Introduction 

 

Recently, characteristics of complicated networks have 

been studied. Especially, the properties such as “Small 

Path Length”, “High Clustering”, and scale-free are paid 

attention to [1, 4]. Watts & Storogatz discovered that real 

world networks have common characteristics of “small 

world” such as the power grid network, nervous networks, 

and a collaboration network of film actors. The small 

world is featured as small path length and high clustering 

coefficient. This means that neighboring nodes are almost 

connected and some long paths are shortcut. The scale-

free is a network whose degree distribution follows a 

power law. Thus, the fraction p of nodes having k 

connections to other nodes is as follows:                      wh-

ere γ is a constant value. This degree is the number of 

edges connected from a node. The examples of scale-free 

networks in the real world are shown in Table.1. 

 

 

 

Table 1: Scale-free networks [1] 

 

On the other hand, the network of the brain is not clearly 

understood while the neural network in the brain has more 

complicated structure, although all-to-all or randomly 

selected synaptic connections have been assumed as 

neural network models. Recently, however physiological 

studies suggest that the neural networks have small-world 

and scale-free properties [2, 8]. 

Assuming that the neural network has the small world 

and free scale properties, how are the spikes propagated?  

This research aims to clarify the characteristics of spike 

propagation in a Pseudofractal scale-free neural network 

model, which has scale-free and the small-world 

properties (Fig.1) [4, 5]. 

2. Methods 

2.1. Pseudofractal scale-free model 

The growth starts from a single edge connecting two 

nodes at t=-1. At each time step, every edge generates an 

additional node, which is attached to both end nodes of 

the edge. Notice that the Pseudofractal scale-free model 

(PFS) at time step t=-1 can be made by connecting 

together the three t graphs (Nodes newly added are shown 

with open circle, and the other nodes are shown with filled 

circle.)(Fig.1). In PFS, three nodes at time t=0 are called 

the neuron of g (generation) =0. In the same way, nodes 

generated at the time of t= 1 are called g= 1 neuron, and 

nodes at t= 2 are called g= 2 neurons, and so on. The 

number of nodes at time t is as follows: 

 

 

When nodes are generated, the index number is assigned 

counter-clockwise. For example, #0, #1, and #2 are 

counterclockwise assigned to the nodes at t=0. Similarly 

#3-#5 are assigned to the nodes generated at t=1, and #6-

#14 are assigned to the nodes at t=2 (Fig.1 Table2). 

Network γ 

Inter net 2.1-2.5 

Film actors 2.3-3.1 

Protein interactions 2.4-2.5 
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The computer simulations in this research use PFS at t= 

8 (9842 neurons, 19683 edges). We assume that the nodes 

of PFS are neurons and the edges are axons. Signals are 

supposed to be propagated from a neuron to other neurons.  

One way directivity (counterclockwise) is assumed in the 

edges (Fig.2). The g=0 neurons are specially called hub 

neurons because of the highest degree (Fig.2: A, B and C). 

 

Figure 1:  Pseudofractal scale-free model 

 

Table 2:  The numbers of nodes and index#, indices 

t 0 1 2 3 4 5 6 7 8 

All nodes 3 3 15 42 123 366 1095 3282 9843 

Generated 
nodes 

3 3 9 27 81 243 729 2187 6561 

Index 0-2 3-5 
6-

14 

15-

41 

42-

122 

123-

365 

366-

1094 

1095-

3281 

3282-

9842 

Input area 
index 

2 5 
12-
14 

33-
41 

96-
122 

285-
365 

825-
1094 

2553-
3281 

7656-
9842 

Output 

area index 
0-1 3-4 

6-

11 

15-

32 

42-

95 

123-

284 

366-

824 

1095-

2552 

3282-

7655 

 

2.2. Neuron model 

For simplicity a network is assumed to be composed 

Integrate-and-fire neurons. The membrane potential V 

obeys the following differential equation: 

 

 

Where I(t) shows the size of an external stimulus and τ 

shows the time constant that express attenuation. The 

spike occurs when membrane potential V(t) exceeds a 

threshold V1, and the membrane potential is reset to the 

resting potential V0 immediately after the spike. 

2.3. External stimulus 

Since the spike interval observed within a brain has very 

strong irregularity, an external stimulus pattern is assumed 

to be a Poisson process [6, 7]. This means that the interval 

time of the spikes follows an exponential distribution. 

The neurons which receive external stimuli are specific, 

and we analyze the signal propagation property. The 

Poisson trains for 30ms are repeatedly input as the 

external stimuli (Fig.3). 

The neurons (input area) to which external stimuli are 

input are those between the hub neuron C and the hub 

neuron A. Precisely, neuron C is included in the input area 

but A is not. 1/3 of the generated neurons correspond to 

the input area (Table2). 

The input area consists of neurons with various 

generations from g=0 to g=8.We assume that external 

stimuli in one trial are provided for the neurons with the 

same generation in the input area. In other words, we 

stimulate one generation in the input area and we compare 

the spike patterns in other areas. 

 

 

Figure 2: Hub neurons and directions of edges 

 

 
Figure 3: External stimuli to input area of g=7(index # 

2553-3281) 

 

3.Simulation Result 

3.1. Raster Plot 

The spikes of the hub neuron A are propagates to hub 

neuron C via many edges. We analyzed the spike pattern 

of the neurons through A to C (it is called output area) 

(Table- 2). 

)()(
)(

tItV
dt

tdV


- 601 -



   

Figure 4 and 5 show raster plots of the g=7 neurons 

(index#1095-2553) in the output area when external 

stimulus is input into g=7 or g=8, respectively. These 

suggest that the spikes tend to periodically synchronize in 

the first hundreds milliseconds. In the long term, they 

become asynchronous. The same tendency is observed 

when the external stimulus is input to another generation. 

In order to quantify the periodic synchronization of raster 

plots, we calculated the autocorrelation of the spikes in the 

output area. The formula which calculates the cross-

correlation of two spike patterns a (t) and b (t) is as 

follows: 

 

 

In the case of a(t)=b(t), Raa(τ) indicates the auto-

correlation. Fig.6 slows a typical example of auto-

correlation of output area neurons when g=7 neurons are 

input. The regular intervals of small peaks show that the 

average period is 10.7ms and the standard deviation is 

0.01. 

 

3.2. Cross-Correlation  

 

Next in order to examine the difference which depends 

on the input generation, we calculated the Fig.7 is the 

cross-correlation of the raster plots for 100ms, which are 

partially shown by Fig.4 and 5. In all cases we simulated, 

we observed that Rab (τ) has a high peak. The peak time of 

the cross-correlation seems to depend on which generation 

is stimulated despite the input patterns. 

 

 

 

 

 

 

Figure 4: The raster plot of the output area g= 7 at the 

time of inputting into g= 7 

 

Figure 5: The raster plot of the output area g= 7 at the 

time of inputting into g= 8 

 

Figure 6: An example of auto-correlation 

 

Figure 7: An example of cross-correlation 

 

 

Figure 8: Input generation and the start time of spikes 
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Once external stimuli are input, the hub neuron A starts 

firing. Then, the spikes are propagated through the output 

area. After several analyses, we noticed that the delayed 

peak of cross-correlation is due to the latent periods of 

neurons which receive spikes from the hub neuron A. 

Figure 8 shows the time when the output area starts to fire 

in response to each generation input. Each plot indicates 

the average and the standard deviation of the time over 

1000 trials. This means that the latency tends to be shorter 

as the input generation becomes younger (i.e. g becomes 

larger). 

This is because higher generation neurons have more 

direct input connections to the hub neuron A (Fig.10). 

When g=8 neurons are stimulated, the distribution of the 

time of first spikes in the output area is shown in Fig.9. 

The average time is 32.1ms and the standard deviation is 

3.7 over 1000 trials. This distribution seems to include 

Poisson and earlier distribution. Further analyses about 

this distribution are one of our future works. 

 

4. Conclusion 

 

In this research, we analyzed the spike propagation 

characteristics of PFS model. The raster plots in the output 

area showed the synchronization of spikes at the 

beginning and became asynchronous as the time proceeds. 

The spike latency becomes shorter as the input generation 

increases from g=5 because of large number of input 

connections. On the other hand, when g=2, 3, and 4, the 

latency is not clearly different. When input generation 

number is low, direct inputs to the hub from the input 

generation neuron are not enough to fire the hub neuron 

(Fig.10). Thus, the hub neuron in this case is driven by the 

neurons activated through more detours. The result 

suggests the possibility that different information 

processing is activated by the heterogeneous routes in the 

network. 
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Figure 9: Histogram of start times in the output when g=8 

input 

 

 

Figure 10: The number of input connections to the hub 

neuron 
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