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Abstract—We added a small subcircuit to an otherwise
standard one-transistor self-biasing resistor-capacitor (RC)
phase-shift oscillator to induce chaotic oscillations in four
dimensions. The final circuit that we have designed uses
only two transistors, no inductors, and is powered by a sin-
gle supply voltage. As such it is an attractive and low-cost
source of chaotic oscillations for many applications. We
show that the qualitative behaviour of the circuit is cap-
tured using a simplified piecewise linear transistor model.
Our analysis of this model shows the chaos to stem from
hysteretic jumps between unstable equilibria around which
growing oscillations exist.

1. Introduction

Many well known oscillator circuits have been modified
to produce chaos since the first autonomous chaotic cir-
cuit was developed by Chua [1]. Often chaos is induced
by the addition of an extra energy storage element such at
the right spot in the circuit, thereby adding a dimension
to a predominantly two-dimensional limit-cycle oscillator.
In some circuits, for example the Collpits oscillator [2], a
chaotic regime is already present for certain values of the
components,

In reference [3] Elwakil and Kennedy conjecture that
every autonomous chaotic oscillator contains a core sinu-
soidal or relaxation oscillator, capable of showing a sim-
ple limit cycle. Thus accordingly, one can derive a chaotic
oscillator from any sinusoidal or relaxation oscillator, by
adding an energy storing element at the right spot in the cir-
cuit. Based on this conjecture we set out to modify the well
known sinusoidal one-transistor RC phase shift oscillator
as described in ref. [4] such that it produces chaotic signals.
Our choice was motivated by the simplicity of the oscilla-
tor, since it is one of the first oscillators students in elec-
trical engineering are made familiar with. From a practi-
cal point of view, oscillators using only active components
plus resistors and capacitors are preferable over those em-
ploying also inductors, the latter being less straightforward
to integrate. Also, the frequency range of an inductorless
oscillator is scalable, by changing the capacitor values.

The phase shift oscillator has been used before as a basis
for a chaotic oscillator, for example in ref. [5] where the
amplifier model is a piecewise continuous function built

using an operational amplifier and diodes. In contrast, we
add a small one-transistor subcircuit which directly inter-
acts with the RC-ladder itself, thus creating, as we show
further on, an extra unstable fixed point around which oscil-
lations exist. The attractiveness of the resulting circuit lies
in its simplicity and low parts count. No specialized com-
ponents such as dedicated multipliers are needed. Neither
the component values nor the supply voltage are critical.

In the next sections the circuit is introduced and exper-
imental results are discussed. We introduce a simplified
piecewise-linear model of the circuit. A partial analysis on
this simplified model hints that the chaos stems from a new
bistability that is introduced by the add-on circuit.

that is present in the circuit.

2. The circuit and experimental results

Figure 1 shows the circuit that we designed, which con-
sists of a standard single-supply RC phaseshift oscillator
with a subcircuit -inside the dashed line- interacting di-
rectly with the RC-ladder. Since there is a direct current
path from collector to base of Q1, the circuit is self biasing.

The following component values are used: R = 10 kΩ,
R1 = 5 kΩ, R2 = 15 kΩ, R3 = 30 kΩ, C = 1 nF,
C2 = 360 pF. The transistors Q1 and Q2 are of the type
BC547C although this is not critical. Both the first resistor
of the RC-ladder and the collector resistor of Q1, have been
chosen equal to 1/2R. The subcircuit consisting of Q2, R2,
R3, R4 and C2 is responsible for the chaotic behaviour. As
will be shown further on, the components within the box
add new equilibria, In both equilibria Q1 is biased as an ac-
tive amplifier, enabling oscillations. It is clear that for low
R4 or low Vp transistor Q2 will not conduct and the circuit
reduces to the unmodified phase shift oscillator. The base
oscillation frequency in the chaotic operating regime for
R4 = 44 kΩ, Vp = 5 V is approximately 44 kHz. The ca-
pacitors can be scaled to reach other frequencies. The time
trace of vCE1, figure 2, shows that the dynamics consist of
growing oscillations in between jumps between two states
of high and low average voltage of the collector of Q1. Note
that the collector of Q2 shows an almost binary distribution
in this regime. Figure 3 shows an oscilloscope picture of
the attractor projection vCE1 vs. vCE2 for R4 = 44 kΩ and
Vp = 5 V, from which the bistable oscillations around two
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Figure 1: A two-transistor chaotic RC phase shift oscilla-
tor. See text for component values. The subcircuit within
the dashed line causes the chaotic operation.

Figure 2: Measurements of vCE1 (red) and vCE2 (blue) for
R4 = 44 kΩ, Vp = 5 V, other component values as stated
in the text. The collector voltage of Q1 shows bistable os-
cillations. In contrast, the collector voltage of Q2 is close
to binary distributed with sharp jumps between two states.

Figure 3: Attractor projection from the circuit for R4 =

44 kΩ, Vp = 5 V. Horizontal: vCE1, 0.2 V/division, verti-
cal: vCE2, 0.1 V/division.

unstable equilibria are clearly visible.

3. Simplified Model and Analysis

In this section we partially analyse a simplified model
and show that the circuit can be understood as a Schmitt-
trigger combined with an oscillator. Removing capacitors
C from figure 1 such that C2 is the only energy-storing el-
ement, yields a one-dimensional two-transistor circuit, in
which the transistor configuration is quite reminiscent of an
Eccles-Jordan trigger circuit. The fixed points of this one
dimensional circuit are the same as the fixed points of the
original four dimensional circuit. Therefore it makes sense
to analyze the fixed points of this one-dimensional circuit
first. Often when a circuit shows bistability, at least in one
of the states the active components are either saturated or
non conducting such that there is no gain available to sup-
port oscillation. Here transistor Q1 has gain in both states.
A simplified model can be derived, that has shown to still
capture the dynamics qualitatively. First, the base currents
iB1,2 are asumed to be of negligible influence. Second, we
assume the current through R3 does not load the collector
of Q1 down very much. Under these assumptions, iB1,2 = 0,
R3 � R1, R, the system is adequately presented by:

RC
dv1

dt
= −v1

(
1 +

R
2R1

)
+ v2 + Vp

R
2R1
− iC1

R
2
,

RC
dv2

dt
= −2v2 + v1 + vBE1 − iC2R,

RC
dvBE1

dt
= −vBE1 + v2,

R3C2
dvBE2

dt
= −vBE2

(
1 +

R3

R4

)
+

v1

2
+

Vp

2
− iC1

R1

2
.(1)
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Figure 4: Numerically obtained attractor of the Eq. 1 for
R4 = 44 kΩ, Vp = 5 V.

We use a strongly simplified and static piecewise linear
(PWL) transistor model:

iC1 =

{
min

(
GM1 (vBE1 − VT1) , Vp+v1

R1

)
, vBE1 > VT1

0 , vBE1 < VT1

iC2 =

{
min

(
GM2 (vBE2 − VT2) , v2

R2

)
, vBE2 > VT2

0 , vBE2 < VT2.
(2)

This transistor model shows three distinct regions, a cut-
off region where vBE < VT , an active region where there is
gain, and a saturated region. In this simplified model we
set the threshold of conduction voltage VT1,2 equal for both
transistors at VT = 0.6 V. The collector saturation cur-
rents in eq. 2 are chosen such that the collector to emitter
voltages do not become negative. We set GM1 = 16 mA/V
and GM2 = 1 mA/V, corresponding with average transcon-
ductances found in the experiments. Figure 4 shows the
results for a numerical integration of the previous system.
We nondimensionalize the system as follows:

x =
v1 − VT

VT
, y =

v2 − VT

VT
, z =

vBE1 − VT

VT
,

u =
vBE2 − VT

VT
, t′ =

t
RC

, τ =
R3C2

RC
= 1.08,

a =
Vp

VT
=

5
0.6

, b = 1 +
R3

R4
,

α = GM1R1 = 80, β = GM2R = 10.

This yields:

ẋ = −2x − 1 + y + a − hα (z, 1 + a + x) ,
ẏ = −2y + x + z − hβ (u, 2/3(y + 1)) ,
ż = −z + y,

τu̇ = −ub − b +
a
2

+
1
2

+
x
2
−

1
2

hα (z, 1 + a + x) . (3)

The function h is defined as:

hγ(x, y) =

{
min (γx, y) , x > 0
0 , x ≤ 0 (4)

Altough the full system is four dimensional, insight about
the role of the subcircuit built around transistor Q2 can
be gained by looking at the behavior of the circuit with
capacitors C removed. We now show that the subcircuit
built around transistor Q2 adds fixeded points for a range
of values of the parameter b such that bistability exists
and calculate this range. These fixeded points will then
also exist in the full four dimensional system. Setting
ẋ = ẏ = ż = 0 results in expressions for the behaviour
of the one-dimensional circuit obtained by removing the
capacitors C:

x = a − 1 − hβ
(
u, 2

3 (y + 1)
)
− hα(z, 1 + a + x),

y = a − 1 − 2hβ
(
u, 2

3 (y + 1)
)
− hα(z, 1 + a + x),

z = y,

τu̇ = −ub − b + a+α
1+α

+ hβ
(
u, 2

3 (y + 1)
)

3α−1
2α+2 . (5)

It can be shown that for Eq. 5 z always has values such that
hα(z, 1 + a + x) = αz in Eq. 5. Other propositions lead to
contradictions. The phase plot of u for several values of b is
shown in figure 5. It consists of three distinct straight-line
regions:

region 1, −1 < u < 0:

In this region Q2 is non-conducting:

τu̇ = −ub − b + a+α
1+α

. (6)

If b > bcrit1 = (a + α)/(1 + α) ≈ 1.091 or R4 < 331 kΩ,
there exists a stable fixed point u∗− given by:

u∗− = −1 + 1
b

a+α
1+α

,

x∗− = y∗− = z∗− = a−1
1+α

. (7)

region 2, 0 < u < usat:

In this region Q2 is actively conducting but not saturated.
The saturation value does not depend on b:

usat = 1
β

2a+2α
3α+7 ≈ 0.072. (8)

The evolution is given by:

τu̇ = −u
(
β
2

(
3α−1
α+1

)
− b

)
− b + a+α

1+α
, (9)

which is an ascending straight line if:

b < β
2

(
3α−1
2α+2

)
≈ 14.75. (10)

Furthermore if Eq. 9 crosses zero for u < usat, an unsta-
ble equilibrium u∗0 exists in this region. The condition for
which this unstable equilibrium exists is:

b < bcrit2 =
6β(a+α)

2a+2α+3αβ+7β ≈ 2.0025, (11)

- 492 -



Figure 5: Phase plot for the one-dimensional circuit ob-
tained by removing capacitors C from the chaotic oscilla-
tor. For a range of b values, a bistability exists. The added
equilibria then also exist in the full four-dimensional oscil-
lator circuit, leading to chaotic bistable oscillations. The
value of b = 1.7, corresponding to R4 = 44 kΩ, is shown
in red.

or R4 > 29.9 kΩ. For b = 2.0025, the unstable equilib-
rium is born together with a stable equilibrium in a ’blue
sky’ bifurcation. Experimental evidence of was found at
this value of R4, as a point of increased intensity on the os-
cilloscope display indicated a critical slowing down. The
position of this equilibrium for the full four dimensional
circuit is given by:

u∗0 =
−b(1+α)+a+α

b(1+α)− β
2 (3α−1)

,

y∗0 = z∗0 = 1
1+α

(
a − 1 − 2βu∗0

)
,

x∗0 = y∗0 − βu∗0, (12)

region 3, u > usat:

In this region Q2 is saturated:

τu̇ = −ub − b + a+α
1+α

+ a+α
3α+7

3α−1
1+α

, (13)

with a stable equilibrium u∗+ if b < bcrit2:

u∗+ = −1 + 1
b

(
a+α
1+α

+ a+α
3α+7

3α−1
1+α

)
. (14)

Note that for u > usat, x, y and z are fixed at:

x∗+ = 5a+2α−7
3α+7 ,

y∗+ = z∗+ = 3a−7
3α+7 .

Note that altough this discussion is only valid for the
one-dimensional subcircuit, we remark that the added fixed
points are also existent in the full four dimensional circuit,
where they result in bistable oscillations as shown by our
experiments.

4. Discussion

A simple chaotic oscillator derived from a resistor-
capacitor ladder oscillator has been introduced, see fig. 1.
The circuit does not need specialty components such as
multipliers, is inductorless and operates with a single sup-
ply voltage. The base frequency can be chosen by scaling
the capacitors. None of the component values are critical.
Analysis with a simplified transistor model shows that the
addition of the subcircuit consisting of Q2, R2...4 and C2 to
the oscillator enables two fixed points around which oscil-
lations are present if 1.091 = bcrit1 < b < 2.0025 = bcrit2
corresponding to 29.9 kΩ < R4 < 331 kΩ. The dynamics
then consist of chaotic jumping between these two states.
The above points towards the following ’design guideline’,
which was constructed in hindsight, for inducing chaos in
this type of oscillator:
Starting from a standard oscillator, remove the energy stor-
ing elements in such a way that biasing is not influenced,
i.e. open the capacitors and short the inductors. Then add
a one-dimensional subcircuit such that an extra equilib-
rium is introduced in such a way that the active elements
show sufficient gain for oscillation around both the added
and the original equilibrium. Reintroducing the original
energy storing elements of the oscillator is then likely to
lead to complex dynamics.
The difficulty in applying above guideline in this particu-
lar case is that bias levels and gain are not independent.
This could be alleviated by interchanging the resistors and
capacitors of the RC ladder and providing bias to Q1 sep-
arately. It remains to be tested if this design guideline can
be applied succesfully to induce chaos in other types of os-
cillators.
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