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Abstract— Spike-timing-dependent plasticity (STDP)
has been experimentally observed in several areas of the
brain and theoretically analyzed in model studies. In par-
ticular, temporal development and equilibrium states of
synaptic distributions have been enthusiastically analyzed.
Although these analyses are important to understand mech-
anisms of STDP in neural networks, it has not been yet
fully clarified what kind of spatial structures STDP orga-
nizes. In this paper, analyzing spatial structures in neural
networks developed through STDP, we investigated effects
of such structures for neuronal activities. As a result, de-
pending on the mean inter-spike interval (ISI) of external
inputs, STDP generates different network structures. Fur-
thermore, neuronal activities in the network also change as
the mean ISI of external inputs varies.

1. Introduction

Billions of cells interact with each other mainly through
chemical synapses in the brain. Cells in the brain con-
struct extremely complex networks with synaptic connec-
tions and effectively process huge amount of information
using such complex structures. In addition, for memories,
learning, and development, it is generally considered that
synaptic plasticity plays an important role in the brain.

Recent studies in the field of the neuroscience have re-
vealed that the long-term synaptic modifications arise de-
pending on precise relative spike timings between pre-
and postsynaptic action potentials, which is called spike-
timing-dependent plasticity (STDP). STDP has been ex-
perimentally observed in several areas of many kinds of
species [1–6]. The long-term potentiation (LTP) occurs
when a postsynaptic action potential follows a presynaptic
one within tens milliseconds while the reverse order of ac-
tion potentials between pre- and postsynaptic neurons leads
the long-term depression (LTD) [1, 3, 5, 6].

Triggered by these experimental studies, basic mecha-
nisms of STDP have been widely analyzed in the computa-
tional neuroscience. In particular, temporal evolution and
equilibrium states of synaptic distribution have been com-
putationally and theoretically analyzed [7–11]. These anal-
yses are indispensable to understand the basic mechanisms
and properties of STDP. However, in these analyses, net-
works have particular forms: many presynapses and one
postsynaptic neuron. Analyses of the synaptic distribution
are appropriate because of a simple network structure used

in the analyses, but are not enough when we analyze the
works of STDP in recurrent neural networks. Then, many
scientists begin to be interested in mechanisms and proper-
ties of STDP in the recurrent neural networks [12–17], but
it has been unclear how structures are constructed through
STDP yet.

In this paper, we analyze temporal evolution of the spa-
tial structures in a recurrent spiking neural network orga-
nized through STDP from viewpoints of the complex net-
work theory. In addition, we also analyze the neuronal ac-
tivities and relation between the structures and the neural
activities in the neural networks organized through STDP.

2. Methods

Anatomical findings in cortices show that the ratio of the
number of excitatory and inhibitory cells is 4 : 1. Then, a
neural network is constructed from N cells in which 4N/5
cells are excitatory and N/5 ones are inhibitory. In the
neural network, each cell is connected with M other cells
through synapses where M postsynaptic cells are randomly
selected and there are no connections between inhibitory
cells. Dynamics of the jth cell is represented by the fol-
lowing 2-dimensional ordinary differential equations:

v̇ j = 0.04v2
j + 5v j + 140 − u j + I j(t), (1)

u̇ j = a j(b jv j − u j), (2)

with the auxiliary after-spike resetting:

if v j ≥ 30 [mV], then
{ v j ← c j

u j ← u j + d j
(3)

where v j and u j are the membrane potential and the recov-
ery variable of the jth cells, respectively [18]. The variable
I j is the sum of an external input and presynaptic inputs into
the jth cell: I j(t) = Iextδ(t−text

j )+
∑N

i, j wi jδ(t−ti−di j) where
Iext

j represents the strength of an external input into the jth
cell, wi j is a weight of synaptic connection from the ith to
jth cells characterized by the postsynaptic potential, ti is
the firing time of the ith cell, di j represents an axonal con-
duction delay from the ith to jth cells, and δ(t) represents
the delta function. The model described in Eqs. (1)–(3) is
computationally effective as well as the leaky-integrate and
fire model but realizes rich firing patterns with varying the
parameters a j, b j, c j, and d j [19].
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Synaptic weights between excitatory cells change
through STDP and an STDP window function is described
as

∆wi j =

{
A+ · e−|∆ti j |/τ+ ∆ti j > 0
−A− · e−|∆ti j |/τ− otherwise

(4)

where A+ and A− are the learning rates of the LTP and LTD,
and τ+ and τ− are the time constants determining the ex-
ponential decays of the LTP and the LTD in the window
function [8, 20]. In Eq. (4), ∆ti j(= t j − di j − ti) represents
a relative spike timing between the ith and jth cells where
ti is the firing time of the ith cell. The ith and jth cells cor-
respond to a pre- and a postsynaptic cells, respectively. In
addition, nearest spikes contribute for the long-term synap-
tic modifications [21].

In the following analysis, the number of cells in the spik-
ing neural network is fixed to 1, 000. We use the regu-
lar spiking type as excitatory cells while the fast spiking
type as inhibitory ones. We use the same parameter val-
ues in Eqs. (1)–(3) as in Ref. [18]. The strength of ex-
ternal inputs Iext = 20 [mV] for all the cells in the net-
work, and we assume that external inputs for each cell
is the Poissonian random input. The delay di j is set to
[0, 10] [ms] for excitatory synapses, which is uniformly
distributed while di j is set to 1 [ms] for inhibitory ones. In
the initial condition, the weights wi j for excitatory and in-
hibitory synapses are set to 6 and −5 [mV], respectively.
We limit the range of synaptic weights for STDP between
0 and wmax(= 10) [mV]. In Eq. (4), A+ and A− are set to
0.1 and 0.12, and τ+ = τ− = 20 [ms].

To investigate network structures, we use the degree
which is one of the basic measures for the complex network
theory. We can define two types of the degree because the
network is a digraph. in- and outdegree. The indegree kin

i
and outdegree kout

i of the ith cell are defined as follows:

kin
i =
∑

j

H0(w ji/wmax) and kout
i =

∑
j

H0(wi j/wmax) (5)

where H0(w) represents the Heviside step function. In this
paper, to simplify our analysis, we only focus on synap-
tic connections between excitatory cells. Moreover, we
also use the strength, a natural extension of the degree for
weighted networks. There are two types of strength as well
as the degree, and the instrength sin

i and the outstrength sout
i

are defined by

sin
i =
∑

j

w ji/wmax and sout
i =

∑
j

wi j/wmax. (6)

In addition, we use the coefficient of variation (CV ) [22]
and the local variation (LV ) [23] as statistics for evaluating
neuronal activities. The CV and LV are defined as follows:

CV =
T
∆T
, (7)

LV =
1

n − 1

n−1∑
i=1

3(Ti − Ti+1)2

(Ti + Ti+1)2 (8)

where T = 1
n
∑n

i=1 Ti and ∆T =
√

1
n−1
∑n

i=1(Ti − T )2 are
the mean value and the standard deviation of n inter-spike
intervals (ISIs) and Ti is the ith ISI.

(a) Initial condition

(b) The mean ISI of external inputs is 1, 000

(c) The mean ISI of external inputs is 100

(d) The mean ISI of external inputs is 10

Figure 1: Joint degree (left) and strength (right) distribution
matrices of self-organized neural networks through STDP.

3. Results

3.1. Network structures

The results are depicted by the joint degree distribu-
tion matrix (JDDM) or the joint strength distribution ma-
trix (JSDM) [24] (Fig. 1). The JDDMs (JSDMs) are 2-
dimensional images whose vertical and horizontal axes are
indegree (instrength) and outdegree (outstrength), respec-
tively. Color bars represent corresponding frequency. To
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capture distribution characteristics easily the frequencies
above 6 are included into 6.

In the initial condition, both JDDM and JSDM show
the Poissonian distribution because cells are randomly con-
nected with synapses (Fig. 1(a)). In the case of the self-
organized neural network driven by external inputs whose
mean ISI is 1, 000 [ms], both the outdegree and the out-
strength widely distribute although both the indegree and
the instrength of all cells take almost the same value (Fig.
1(b)). In addition, frequencies of the low outstrength be-
come high (Fig. 1(b) right). Then, STDP generates the
network structure in which all the cells are affected from
almost the same number of other cells by the same strength
but the attention depends on each cell when the neural net-
work is stimulated by external inputs whose mean ISI is
1, 000 [ms].

When the mean ISI is 100 [ms], the distribution range of
the indegree is similar to the case of 1, 000 [ms], but that of
outdegree becomes about a half (Fig. 1(c) left). In addition,
the outdegree of many cells becomes high and the distribu-
tion of the outdegree is biased in the neural networks. We
can see many cells affect about 40 other cells. Interestingly,
we can see two groups emerge in the neural network from
the result of the JSDM (Fig. 1(c) right). In the first group,
the instrength is high but outstrength is low. In contrast,
the outstrength is high but instrength is low in the second
group. The cells belonging to the first group are strongly
affected from the other cells but weakly affect to the other
cells. It means that these cells mainly process information
inside the network. The cells belonging to the second group
are weakly affected from the other cells but strongly af-
fect to the other cells, which indicates that these cells are
mainly activated by external inputs, then, the activities of
these cells should reflect the external inputs. Namely, these
cells play a role of receiver for external information and
distribute the information.

When the mean ISI of external inputs is 10 [ms], both the
indegree and the outdegree are low (Fig. 1(d)). In this case,
all the cells interact no more than 30 other cells. In addi-
tion, from the JSDM, all the cells are weakly connected to
the other cells, so that neuronal activities are controlled by
external inputs and an assembly of cells no longer behaves
as a network.

3.2. Neural activities

The results of neuronal dynamics are described as the
scattergrams of the CV and the LV (Fig. 2). In each figure,
the left panel is the result of the network structure in the
initial condition while the right one is for the network after
the learning. Dashed lines represent the expected values of
the CV and the LV for the Gamma process. The mean values
and the standard deviations of the CV and the LV are shown
in each figure. The correlation coefficient between the CV

and the LV is also shown in each figure. To compute the
values of both the CV and the LV , we use n (= 100) ISIs for

(a)

(b)

(c)

Figure 2: Scattergrams of the coefficient of variation
(CV ) and the local variation (LV ). Dashed curves rep-
resent the expected values of the CV and the LV for the
Gamma process represented by the family of distribution
functions pz(T ) = azT z−1 exp(−aT )/Γ(z) where Γ(z) =∫ ∞

0 dt tz−1 exp(−t) [23]. The variable r indicates the cor-
relation coefficient of the CV and the LV . In each figure,
left and right panels depict the results of the initial condi-
tion and after the learning. The mean ISIs of external inputs
are (a) 1, 000, (b) 100, and (c) 1 [ms].

all the cells following Ref. [23]. To generate ISIs, we stop
applying STDP to the network but continue to simulate the
organized network with the random external inputs.

From the result of 1, 000 [ms] mean ISI, the mean val-
ues of both the CV and the LV take high values in the initial
condition (Fig. 2(a) left). Then, many cells fire irregularly
in the network. However, the correlation coefficient r be-
tween the CV and the LV is negative. It means that a few
cells exhibit global irregular firing but local regular firing.
In addition, the standard deviations of both the CV and the
LV are large, which indicates that neuronal activities are di-
verse. Comparing to the result of the initial condition, the
mean value of the CV slightly increases but that of the LV

decreases after the learning (Fig. 2(a) right). Then, STDP
leads global irregularity and local regularity to neuronal ac-
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tivities when external inputs whose mean ISI is 1, 000 [ms]
are injected. The decrease of the standard deviation of the
CV and the LV indicates the decrease of the diversity of
neuronal activities in the network.

When the mean ISI of external inputs is 100 [ms], the
mean value of the CV is larger than that of the case of
1, 000 [ms] mean ISI while the mean value of the LV is
smaller than that of the case of 1, 000 [ms] (Fig. 2(b) left).
Then, global irregularity strengthens but local one weakens
and the other tendency is almost the same as the result of
1, 000 [ms] mean ISI in the initial condition (Fig. 2(a) left).
After the learning, both the mean values of the CV and the
LV decrease from the initial condition (Fig. 2(b) right). It
is intriguing that for the external inputs whose mean ISI is
100 [ms], STDP reduce not only the global irregularity but
also the local irregularity of neuronal activities.

When cells are stimulated by external inputs with
10 [ms] mean ISI, the mean value of the CV is larger and
that of the LV is smaller than two other cases in the ini-
tial condition (Fig. 2(c) left). Taking account of the results
shown in Figs. 2(a) and 2(b), the global irregularity of neu-
ronal activities becomes stronger if the mean ISI of exter-
nal inputs is shorter. In contrast, the shorter the mean ISI
of external inputs is, the stronger their local regularity be-
comes. In addition, comparing to the other cases, the stan-
dard deviations of both CV and LV are smaller. Then, the
neuronal activities in the network lose their diversity. After
the learning, the mean value of CV becomes larger but that
of LV becomes smaller than those of the initial condition as
well as the result of 1, 000 [ms] (Fig. 2(c) right).

4. Conclusion

In this paper, we analyzed temporal evolution of self-
organized neural network structures through spike-timing-
dependent plasticity (STDP) from viewpoints of the com-
plex network theory. As the results, we find that depending
on the mean ISI of external inputs, spatially different struc-
tures are constructed by the STDP In particular, STDP gen-
erates a specific structure for external inputs whose mean
ISI is 100 [ms] in our analysis. In such a structure, the neu-
ral networks may accommodate the information from the
other areas and efficiently process the information in the
neural network. In addition, the similar structures emerge if
the mean ISI of external inputs resides so called the gamma
frequency (results are not shown). It is widely acknowl-
edged that the Gamma oscillation plays an important role
for memories and learning. Then, we expect that the net-
work structures we showed in this paper might be useful
for the memories or the learning. In addition, we showed
that the local irregularity of neuronal activities decreases
through STDP. However, the results of the global irregular-
ity are different from those of the local one. In particular,
the global irregularity decreases only when external inputs
of 100 [ms] mean ISI drives the STDP neural network.
Taking into account the results of the networks structure,

the mean ISI is of 100 [ms] meaningful for the STDP neu-
ral network.

As a future work, we will investigate the neural network
structures constructed through STDP if the other parame-
ters are varied.
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