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ABSTRACT

This paper studies application of discrete particle swarm
optimizers (DPSO) to multi-solution problems (MSP) in
discrete dynamical systems. The algorithm consists of two
stages: the global search for constructing local sub-regions
each of which includes one target solution and the local
search that operates in parallel in the local subspaces to find
all the target solutions. Performing basic numerical exper-
iment, the algorithm efficiency is confirmed.

The particle swarm optimizer (PSO) is an population-based
optimization algorithm inspired by flocking behavior of liv-
ing beings. The particles represent potential solutions and
moves to find the target solutions according to experience
of its own and neighbors’ history [1]. The PSO is sim-
ple in concept, is easy to implement and is applicable to
various systems including artificial neural networks [2]-
[5]. This paper studies a DPSO for application to MSP
[6]-[8] in discrete dynamical systems [9]. The DSPO oper-
ates in a discrete-valued search space consisting of lattice
points in order to optimize a discrete objective function.
The DPSO has several advantages in reliable operation, re-
producible results, robust hardware implementation and so
on [1] [10]. The MSP is inevitable in practical/potential ap-
plications [6]-[8]. The target of our DPSO is a set of fixed
points corresponding to the minima of the objective func-
tion. The DSPO does not try to find the exact optimum so-
lutions but to find desired approximate solutions precisely
and speedily. The algorithm consists of two stages. The
first stage is global search in a discrete search space of
rough lattice points. Applying the particles with ring topol-
ogy, the DPSO tries to find the local subspaces (LSSs) each
of which has one approximate solution that satisfies a crite-
rion. The second stage is local search for finding the target
solution in each LSS having finer lattice points than that in
the global search. The algorithm operates in parallel in all
the LSSs and tires to find all the approximate solutions that
satisfies a criterion.

Let us consider the DPSO to find multiple fixed points in
the following 2-dimensional map:

x1(n + 1) = x2(n) + ax1(n) + b tan−1 x1(n) ≡ f (x1, x2)
x2(n + 1) = −cx1(n) ≡ g(x1, x2)

(1)
where n is the discrete time. Such maps are important study

objects and search of fixed points is basic problem in anal-
ysis of nonlinear dynamical systems. For simplicity, we fix
the parameters a = 0.55, b = 4 and c = 0.9. In this case
the map has three fixed points: x1

s = (−3.91284, 3.52156)
(Sol1, stable); x2

s = −x1
s (Sol2, stable); x3

s = (0, 0) (Sol3,
unstable). Adding magnitudes of f and g, we obtain the
positive definite function F whose minimum value 0 gives
the target fixed points as shown in Fig. 1 (a):

F(x1 , x2) = | f (x1, x2) − x1| + |g(x1, x2) − x2|
S 0 = {x| |x1| ≤ 5, |x2 | ≤ 5 } (2)

where S 0 is the search space. It should be noted that our
object is not finding the fixed points.

In the global search, the search space S 0 is discretized into
m1×m1 lattice points. Let t1 denote a search step. At t1 = 1,
we assign N1 particles of ring topology on S 0 as shown in
Fig. 1(b). Let xi be the i-th particle positions and let vi be
the i-th particle velocity. They are updated:

vi(t1 + 1) = ωvi(t1) + r1(xpbesti − xi(t1))
+ r2(xlbesti − xi(t1))

xi(t1 + 1) = xi(t1) + vi(t1 + 1)
(3)

where i = 1 ∼ N. r1 and r2 are random values in [0, γ1] and
[0, γ2], respectively. xpbesti is the i-th personal best such
that F(xpbesti ) is the minimum for xi in the past history.
xlbesti is the i-th local best that is the best of the personal
bests in the neighbor of the i-th particle. After this update,
the position x is converted to the closest lattice points in
S 0. The personal bast is updated:

xpbesti = xi(t1) if F(xi(t1)) < F(xpbesti ) (4)

Following the personal bests, the local bests are also up-
dated. If F(xi) < C1 for some i then xi is declared as a first
approximate solution (AS1, see Fig. 1 (c) ) where C1 is the
first criterion. The position bmxi is declared as a tabu lat-
tice point and is prohibited to revisit. xi is reset to a lattice
point (Fig. 1(c)). vi, pbesti and lbesti are all reset. We re-
peat such procedure up to the the maximum time step tm1.

In order to make the LSSs each of which includes the target
solution, we select top K of the AS1s. We then construct
K candidates of LSSs consisting of ml ×ml lattice points in
square shape cantered at each AS1. If two or more squares
overlap then the subset centered at the smallest AS1 is sur-
vived and the other subsets are removed. If we obtain more
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Figure 1: Particles movement of F for N1 = N2 = 20, m1 = 64,
ml = 8, m2 = 32, ω = 0.7, γ1 = γ2 = 1.4, C1 = 0.5, K = 30,
C2 = 0.04 and tm1 = tm2 = 50. (a) three fixed points (solutions,
the red crosses) of the 2D map, (b) initialization for global search,
(c) to (e) global search process, (f) three local subspaces (LSSs).
(g) initialization for local search, (h) the approximate solution

than three survived subsets, we select subsets centered at
top 3 of AS1s. The three subsets are the LSSs as shown in
Fig. 1 (f). If the three subsets include the three solutions
then the global search is said to be successful. In the local
search, each LSS is re-discretized into m2×m2 lattice points
The DSP operates on each LSS in parallel where N2 parti-
cles of complete graph are assigned on the LSS. If some
particle satisfies F(x) < C2 then algorithm is terminated
successfully, where C2 is the criterion of the approximate
solution. Otherwise, we repeat such procedure up to the the
maximum time step tm2.

Performing basic numerical experiments as shown in Fig,
1, we have confirmed that the both global search and lo-
cal search can realize over 90% success rate: if the param-
eters are selected suitably, the DPSO can operate almost
successfully. Basically, there exists a trade-off between the
success rate and computation cost and the DPSO can re-
duce the computation cost depending on the resolution. It
should be noted that this is a first step to develop a novel
DPSO for MSP. Future problems are many, including the
following: role of key parameters, Analysis of search pro-
cess, detailed performance evaluation, and application to
bifurcation analysis.
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