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Abstract—In recent years the tools of permutation com-
plexity have found interesting applications in time series
analysis. These tools make use of any quantity or func-
tional based on the order relations (permutations) appear-
ing between consecutive elements of a time series. We pro-
pose to extend the use of permutation complexity tools to
the analysis of complex spatiotemporal dynamics. In this
paper we illustrate how interesting properties of a paradig-
matic class of models of spatiotemporal dynamics, the Cel-
lular Automata, in particular its topological entropy, can
be estimated using permutation complexity tools. We dis-
cuss later the implications of this result and how similar
ideas can be applied to more general types of spatiotempo-
ral data.

1. Introduction

If the state space of a dynamical system is equipped
with a total ordering, this additional structure can be taken
into account when analyzing its behavior. The result is
what we call permutation analysis, an approach to dynam-
ics and dynamical complexity characterized by conceptual
simplicity, an algebraic flavor and computational speed.
The tools of permutation analysis include ordinal patterns,
order-isomorphy, metric and topological permutation en-
tropy, discrete entropy, and regularity parameters. Permu-
tation analysis has been successfully applied to the estima-
tion of entropies [1, 2], measure of complexity in time se-
ries [3], recovery of control parameters of unimodal maps
from symbolic sequences [4], characterization of synchro-
nization [5], detection of determinism in time series [6, 7],
etc. The next challenge is to extend these applications to
physical systems, and more specifically to space-time sys-
tems.

In arecent work [8] we proposed a way to apply the tools
of permutation analysis to the study of complex spatiotem-
poral systems. The aim of this paper is to illustrate some of
the aspects of these ideas making use of Cellular Automata
(CA) as simple models of spatially extended physical sys-
tems. Cellular automata were introduced by Ulam [9] and
von Neumann [10], and are currently the object of intensive
study in mathematical physics, computer science, biology,

etc. [11, 12, 13]. For a readable account on cellular au-
tomata and their remarkable performance in physical mod-
eling (including turbulence, space-time chaos, symmetry-
breaking, and ordering), see, e.g. [14]. The ideas exposed
here can later be adapted to more general spatiotemporal
data sets by discretizing them both in space and in time, for
a detailed description we refer to the reader to Refs. [8, 15].

2. Cellular automata as dynamical systems

For our purposes, it suffices to consider only one-
dimensional CA. In this case, the configuration space is the
two-sided sequence space

S = {(S)nez = (eoey S—ky eers S_15 805 S1s eons Sk» -e) - 8 € ST
(1)
The state of cell i at time # > 0 will be denoted s,(i). At
each time step 7 + 1, the previous state at each cell 7, s,(i) €
S, is updated according to the local rule f : S**!' — § of
the form

Si1(@) = f(s,(i =D, s,(i =1+ 1), ..., 5,0 + ). 2)

The local rule f leads to a global transition map of the
configuration space, F : S% — SZ defined in the obvious
way:

Flos/@)s) = G f(sii =D, s0G— 1+ 1), oy 5:G + D),
= (o 5p1(0), ).

We are going to deal here with finite size CA. The state
vector of the system at time # will be denoted as X}, so

x; = (5:(1), 51(2), ..., 5(N)),

where N is the length of the CA.

The topological entropy of a dynamical system provides
a good estimation of its complexity. For cellular automata,
one can use the following procedure to estimate it [16]. Let
R(w, t) be the number of distinct rectangles of width w and
height (temporal extent) ¢ occurring in a space-time evolu-
tion diagram of (SZ%, F), Fig.1. Then

(&)

1
hiop(F) = lim lim — log R(w, 1). (6)
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Figure 1: Geometrical illustration of the rectangles R(w, f)
used in Eq. (6).

Therefore, the complexity of the CA can be measured by
the number of distinct words or patterns per time unit gen-
erated by the global transition map F as time evolves. It
follows that

hiop(F) < 2llog|S], (N

where [ is the neighborhood size of the automaton and |S |
is the cardinality of S.

In next section we are going to describe some tools of
permutation analysis and in particular the notion of ordinal
pattern. After this, we are going to discuss how they can be
used to estimate the topological entropy of a CA.

3. Ordinal patterns and topological entropy

Let x5 = (xu)neny, be a sequence generated by a source
X whose elements x, belong to a space endowed with a
total ordering <. We say that a length-L block (segment,
word,...) XLV = x, xp41, oo, Xpur-1 defines the ordinal (L-
) pattern © = {7y, ..., T 1) if

Xntmg < Xptmp < oo < Xpmp s (8)

where in case x; = x; and i < j, we set x; < x; for definite-
ness. Note that 7y, ..., 1,1 is a permutation of the numbers
0,1, ..., L—1; for this reason, ordinal patterns are sometimes
called permutations too. The set of ordinal L-patterns will
be denoted by S;.

Topological permutation entropy (otherwise called the
capacity of the source X), is defined as

" P o | .1
oy (X) = ngrolo Moy (X5~ ) = — ngzlo I logN(L), (9)

where N(L) is the number of allowed ordinal L-patterns in
the ‘messages’ output by X. Thus, the estimation of £, ,(X)
boils down to counting the number of distinct patterns in
sliding windows of size L. For a wide class of dynami-
cal systems (maps), the topological permutation entropy is
equal to the topological entropy [15].
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Figure 2: Graph of the logistic map x,+; = g(x,), of its
second itereate and of the graph x,,; = x,. Clearly there is

no point in the [0, 1] interval for which g2(x) < g(x) < x so
the pattern (2, 1, 0) is forbidden.

For amap f : I — I we say that an ordinal L-pattern
is allowed or admissible for T if there exists x € I of type
m, otherwise the ordinal pattern is forbidden for T. Since
[{r € Sy}l = L! and lim; ,,(log L!/L) = oo, it follows from
the result cited above that that orbits of quite general maps
have necessarily forbidden patterns [17, 18]. The forbid-
den ordinal patterns of the shift and signed shift transfor-
mations on sequence spaces have been studied in [19] and
[20], respectively.

In order to see this, consider sequences generated using
the logistic map x,,+1 = g(x,) = 4x,(1 — x,). In Fig. 3 we
can see how for this system there are forbidden ordinal pat-
terns, in particular the pattern (2, 1, 0) cannot be observed
on a time series of this system. On the other hand, un-
constrained random sequences have no forbidden patterns
with probability one. This being the case, the existence of
forbidden patterns (together with the robustness of ordinal
patterns to additive noise) can be exploited to discriminate
deterministic noisy time series from white noise (an inde-
pendent and identically distributed random process), with
a remarkable success [7].

4. Topological entropy of one-dimensional CA

Let F : SZ — SZ be the global transition map of an
elementary CA. We consider for simplicity here CA where
S = {0, 1}. As mentioned in Sec. 2, its dynamical complex-
ity can be measured by means of the topological entropy
(6).

Another possibility consists in using the topological per-
mutation entropy h;,,(F) instead, that can be computed as
follows.

The topological permutation entropy of the automaton
defined by the local rule (2), can be estimated via the or-
dinal patterns of its global map F : {0, 1}% - {0,1}% us-
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Figure 3: Different aspects of a positively expansive CA
(see text). Plot (d) shows the convergence of the topologi-
cal permutation entropy of the automaton to its topological
entropy.

ing two equivalent procedures. The first one would be to
estimate the topological permutation entropy of the “se-
quence” of spatiotemporal data {x;’}fi |» using for this pur-
pose lexicographical order, that is, we say that X!, < x if
Sm(@) = s,(D) for 1 <i < j—1and s,(j) < s,(j). Anequiva-
lent way to achieve the same goal would be to consider the
sequence of real numbers {¢,+}f;’ ,» that for § = {0, 1} has
the form
o si(0)

— [0, 1).

i
i=1 2

¢ =o(x) = (10)
Remarkably, and similarly to what happened with maps,
the topological permutation entropy of the CA is equal to
its topological entropy [15]. This result provides a first in-
sight on the validity of the permutation complexity tools
for the study of spatiotemporal dynamics. We provide now
some numerical evidences validating this result.

5. Numerical results

In order to illustrate our ideas we consider the CA with
local rule

Y

which is an instance of a positively expansive CA, thus
with complicated dynamics. The topological entropy for
this CA is /i;,,(F) = 2log 2 = 2 bit/iteration [16].

Figure 3 shows different aspects of the cellular automa-
ton, fixing the size N = 250. We can see in Fig.3 (a) the
time evolution of cells 1 < i < 250, which clearly displays
a complex spatiotemporal dynamics. In Fig. 3 (b) we can
see a plot of the sequence {(b,*}?i , for this CA, it also has a
corresponding complex appearance. Notice that simple be-
haviour on the CA would typically yield to a simple appear-
ance in the corresponding sequence of ¢, . The existence of
certain structure in this seemingly complex sequence is re-
vealed in Fig. 3 (c) where the “return map” of the sequence,
i.e. the plot of ¢™(x;") vs ¢*(x/" ) is shown. This graph has
seemingly a fractal structure; if the sequence {qﬁ;’}f‘i | were
purely random one would expect to see a random cloud of
points.

Figure 3 (d) illustrates that our result is verified for this
CA, as claimed. There we show the convergence of the
topological permutation entropy rates of order L computed
using the ideas provided above to the value of 4;,,(F) = 2
bit/symbol. This is a simple example of how the tools of
permutation analysis can be used in order to quantify the
complexity of a CA.

f(p.q,r) = p+rmod?2,

6. Conclusion and outlook

In this paper we have provided a simple example on how
the tools of permutation analysis can be used to estimate the
complexity of a system with complex spatiotemporal dy-
namics, using as an example a CA. We have shown that for
a simple class of CA it is possible to estimate its topological
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permutation entropy and that it converges to its topological
entropy.

This result illustrates some of the basic features of the
application of permutation analysis to spatiotemporal dy-
namics. In a recent work we have shown how these ideas
can be extended to the study of spatiotemporal data of Cou-
pled Map Lattices (CMLs) and even to real spatiotemporal
data from magnetoencephalograms (MEGs) [8]. Note that
the state of each site of these two type of data are not (in
principle) discrete. However, in the examples studied we
have notice that it suffices to discretize the state of each site
using two simbols (for example fixing s,(7) = O if the state
of the site at time 7 is below its mean value and s,(i) = 1 if
it is above its mean value). Numerical evidence show that a
permutation analysis of the resulting discretized spatiotem-
poral data provides a way to quantify the complexity of the
systems considered. Furthermore, it can be shown that a
combination of the permutation analysis in time, using the
above ideas, and in space, considering the state vector as
a sequence, allows one to distinguish quite neatly between
different types of complex spatiotemporal data. All these
evidences, together with the computational speed of the
permutation complexity methods and its robustness against
noise (due to the fact that they rely on inequalities) makes
the permutation complexity analysis a promising tool for
the analysis of complex spatiotemporal data.
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