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Abstract—A simulation experiment showed that tempo-2. Methods
rally asymmetric STDP leads to self-organization of feed-
forward networks starting from a pacemaker neuron, bg-1. Neural Network Model

contrast, symmetric STDP does not[Masqda et al. 2007]. \ne adopt a spiking neuron model, which is based on the
However, how the topology of a network without the pacegpaotic neuron model but the output function is the Heav-
maker neuron is changed by the STDP is not well unde[sige function [7]. After it fires, the neuron becomes more

stood. The purpose of this study is to clarify how the toPo'Fefractory to further firing for a time. Assuming thatrep-

ogy of the network without a pacemaker neuron is changgdsents an internal activity of each neuron gn@presents

by asymmetric or symmetric STDP. We executed numerical, oytput value, the dynamics of this model are represented
experiments and analyzed the topology of synaptic connegy the following equations:

tions using some measures. The results suggest that asym-

metric STDP turns a recurrent network into a feedforward Nt
network while symmetric STDP keeps the recurrent struc- d
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1. Introduction

Synaptic connections are modified depending on the . .

. . where N is the total number of the neurons; is the

temporal diference between pre- and postsynaptic aCtIOHiscrimination arameter as tg #euron is exci'][ator or

potentials [1]. This phenomenon is termed "Spike-Timing- hibitory (s —pll ors — _43 respectively)wy is t)r/1e
Dependent synaptic Plasticity(STDP)”. Several kinds of! yi§ = L j = —+0, Tesp YIWii

STDP were found in various regions of the brain. Addi_synap'uc yvelght ‘Tom #neurqn to #neu_ron,A.—(t) is the
xternal input to #neuron,a is the scaling parameter of

tionally, different STDP were observed even in the same r% ) .
y e refractory &ect, 7 is the decay time constant of the

ion [2]. A tri tric STDP is f i - . ) )
gion [2]. Asymmetric or symmetric S is found in cu I1;r_1embrane potentiak;e+ is the decay time constant of the

tured neurons or in a slice preparation respectively and i fractory diect 0 is a threshold for firi For simplicit
dependently [3, 4]. The functionalftiérence of each STDP refractory glect, 0 1S a threshold for firing. For simplicity,
time is assumed to be discrete.

has been studied recently. We investigated a recurrent neural network com d of
A simulation experiment showed that temporally asym: € Investigated a recurrent neural network composed o

0 I 0
metric STDP leads to self-organization of feedforward netgoo neurons. 80% of all neurons are excitatory, and 20%

g o 0
works starting from a pacemaker neuron, because asyfi< inhibitory. The rate of connections is about 20%, that

metric STDP gets rid of feedback paths [5]. By contrast®” each neuron receives synaptic inputs from about 20%

symmetric STDP leaves feedback paths. The pacemalgra” neurons except itselig = 0). The initial synaptic

eights are generally asymmetrical, thatvig, # w;;, and

neuron, which fires with the constant frequency, is founﬁ'] random val e in a uniformlv distributed in 10. 1
in several brain regions. This neuron is rareffeated by € random values are in a unitormiy distribute [0, 1]

other neurons [6]. Without the pacemaker neron, hO\Q.Z. Asymmetric and Symmetric STDP Learning Rules
does the topology of the network change depending on the

difference of STDP? The purpose of this study is to clar- According to the experimental data [3, 4], we assume
ify the difference of the topological change of a recurrenthat the window function of asymmetric STDP (Fig.1(a))
neural network by asymmetric or symmetric STDP. is represented by the following equation:
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the number of paths is almost the same between asymmet-
ric and symmetric STDP. We also take into account direc-

Ap exp(—f—: if At>0 tions in each path. Most of arbitrary two neurons can be
AW = ¢ —Aqexp() if At <0 (3) linked through relaying neurons if paths are well selected.
Td
0 if At =0,

2.4.1. Characteristic Path Length

whereAt is the temporal dference between presynaptic As a method to evaluate the network characteristics,
and postsynaptic action potentiatgoé: — tore), Ap andAy  characteristic path length is defined by the following
are scaling parameters of the changes in synaffitaey, equations:
andtp andry are the rates of exponential decays. Addi-
tionally, we assume that the window function of symmetric 1O 1 N
STDP (Fig.1(b)) is represented by the following equation: L= N zl: Li, Li N_1 ; _diJ" (6)
i= j=1,j#
4) where L; is characteristic path length of #euron,N
is the total number of the neurord; is the shortest path
wherea, b, andc are the parameters which characterizéength from # neuron to # neuron.
the shape of the window function. The modification of the
synaptic weight obeys the following multiplicative equa-

AW = a(1 — bAt?) exp(-cAt?),

tion: 2.4.2. Circular Path Length
To evaluate the feedback paths, we define circular path
Wij(t+ 1) = wij(t) x (1 + Aw), (5)  lengthC as the following equations:
The amount of potentiation is equal between asymmetric N
and symmetric STDP, and the amount of depression is also _1 Z C C = min d- )
under the same condition. Ratio between amount of poten- TN&a TV ' all circular path

tiation and depression is seBQ 1.0 to avoid bursting. L .
whereC; is minimum circular path length ofi#heuron,

(a) (b) N is the total number of the neurord, is the shortest path

02} -] 02 length from # neuron to oneself with going through other
0.1 g 0.1 neurons.

; 0k = ; 0

<4 g
0.1 F E -0.1
Zz L ] Zz ] 3. Simulation Results

“10 5 0 5 10 "0 5 0 5 10
tpost — Lpre tpost = tpre 3.1. Firing Pattern

Under moderate level of input frequency, synchronous
firings are frequently observed without STDP (Fig.2 (a)).
Asymmetric STDP tends to sharpen synchronous firings
(Fig.2 (b)). By contrast, the synchronous firing disappears
by symmetric STDP(Fig.2 (c)). These tendency are quan-
titatively evaluated by the synchrony dbeient (Fig.3).

Independent Poisson-process spike trains are assumed ft§ Synchrony cdécient S(to) is defined by the follow-

be the external input spatiotemporal patterns for the nelf!d quations [8]:
rons. The amplitude of the external input is set uniform. To

Figure 1: Window functions. (a)Asymmetric STOP
(b)Symmetric STDP

2.3. External Inputs

examine the fects of the changes in the synaptic weights S(t)) = max  C(to—t';to), (8)
by spatiotemporal patterns, the external input with the pe- ‘;0*1’"'~T‘tl R
riod of 100 ms is applied repeatedly. LSN S e st - th

pp p y Clt:to) = Nrg Zui=1 24l 2ap—t_1y/2 i ©)

N_lT Zilil 2 EEJ:to—T ot - t}),

wherec is a scaling parameter= 75/T in this study),
We measured characteristic path length to evaluate tineis the total number of the neurons, is the period of
depth of the network, and circular path length to detect thine input spatiotemporal pattemhjs the timing of thd th
feedback paths. In this study, we assume that a path espike of the th neuron, and; is a temporal window epoch
ists if a synaptic weight of the connection is beyond théor synchrony evaluation. In the case of asymmetric STDP,
mean synaptic weights (path threshold) of all connectionfiring neurons are clustered, as illustrated in Fig.4. As a
Therefore, the path threshold is changed temporally, amdsult, feedforward networks will be self-organized.

2.4. Topological Measures
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3.2. Network Diagram

In Fig.5 , neurons are arranged depending on the firing
cluster in Fig.4. Feedback paths of network with asym-
metric STDP are fewer than those of the initial state, as
illustrated in Fig.5(b) . In contrast, the number of feedfor-
ward and feedback paths with symmetric STDP is almost
the same as that of the initial state (Fig.5 (c)).

Neuron inde

3.3. Characteristic Path Length

Figure 6 illustrates that asymmetric STDP increases
gradually the characteristic path length. This suggests that
arbitrary two neurons need more relay neurons between
them. Assuming each relaying neuron included in a layer,
we can consider that the layer becomes deep. In contrast,
symmetric STDP does not change the characteristic path

Neuron index —

x ﬁ% o ﬁéﬁ% Bl ﬁéﬁ% ] length so much.

g - *%%’* e i ++1$+* +H+$*+*++f§ﬁ+ ++j+ﬁ*+ f{ﬁ# fiﬁ ﬁ% ﬁ

= : i e 3.4. Circular Path Length

o e Bt et St Mo da Sesi Svand Svats St e i . . . ) ]

=R é%*ﬂ%”%ﬂ%@%%”ﬁ% T L P et et e Figure 7 illustrates that asymmetric STDP increases cir-

Rt Siie St st St el el i S e ) .

Z e e e ] cular path length, and symmetric STDP does not change
t(ms) it so much. If arbitrary two neurons have feedforward and

feedback paths, the circular path exists. The result suggests
that recurrent paths decrease when asymmetric STDP is ap-

Figure 2: Typical examples of the firin at-
te?n (yeBWithout gTDP (b)Asymgme?ric plied. This may be due to asymmetrical selection of paths

STDP (c)Symmetric STDP in the network.
4. Discussion and Conclusion

o The results may be due to the speciality of our

06 | Pl Lt model. Even if a simple integrate-and-fire neuron model
~0Sr SymmenieSTOR ey is adopted, the results are almost the same as shown above.
Z‘,‘? 2;‘ [ A A R S The dynamics of the model are represented by the follow-

S T S S S R ing equations:
dv(t)
0 100000 N7 _
t(ms) T = V(L) + I(t), (20)
V() := Vo if V() >V, (112)

Figure 3: Synchrony cdicient. The line indicates mean

synchrony cosiicients over 100 simulations. The error bars WhereV(t) is membrane potentiat; is decay constant,
are the standard deviation. [(t) is input currentV is initial value,V; is threshold.

In this study, we analyzed how the topology without
pacemaker neuron is changed by asymmetric or symmetric
STDP. We measured characteristic path length and circu-
200 £ 200 200 lar path length. The result suggests that asymmetric STDP

x + A+
3 gets rid of feedback paths. As a result, the depth of the net-
E R . A work increase, and feedback paths decrease, that is, asym-
o metric STDP turns a recurrent network into a feedforward
3 * + + network. In contrast, symmetric STDP leaves the feedback
Z L& o L o Lt paths, namely, keeps the recurrent structure.

99150 99160 99550 99560 99950 99960
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Figure 4: Firing neurons are clustered by asymmetric References
STDP (The neuron indices are sorted) [1] Markram, H., Lubke, J., Frotscher, M., and Sakmann,

B. “Regulation of synaptic ficacy by coincidence
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Figure 7: Circular path length. The line indicates mean
circular path lengths over 100 simulations. The error bars

are the standard deviation.
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Figure 5: Typical examples of the network diagram. Re ]
lines represent feedforward paths in a firing cluster, whic

is a firing sequence shown in Fig.4. Blue lines represent
feedback paths (reverse directions to the red lines). The
neurons, which do not belong to one of five firing clus{7]
ter, are not illustrated. (a)Without STDP (b)Asymmetric

STDP (c)Symmetric STDP
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Figure 6: Characteristic path length. The line indicates
mean characteristic path lengths over 100 simulations. The
error bars are the standard deviation.
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