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Abstract—A simulation experiment showed that tempo-
rally asymmetric STDP leads to self-organization of feed-
forward networks starting from a pacemaker neuron, by
contrast, symmetric STDP does not[Masuda et al. 2007].
However, how the topology of a network without the pace-
maker neuron is changed by the STDP is not well under-
stood. The purpose of this study is to clarify how the topol-
ogy of the network without a pacemaker neuron is changed
by asymmetric or symmetric STDP. We executed numerical
experiments and analyzed the topology of synaptic connec-
tions using some measures. The results suggest that asym-
metric STDP turns a recurrent network into a feedforward
network while symmetric STDP keeps the recurrent struc-
ture.

1. Introduction

Synaptic connections are modified depending on the
temporal difference between pre- and postsynaptic action
potentials [1]. This phenomenon is termed ”Spike-Timing-
Dependent synaptic Plasticity(STDP)”. Several kinds of
STDP were found in various regions of the brain. Addi-
tionally, different STDP were observed even in the same re-
gion [2]. Asymmetric or symmetric STDP is found in cul-
tured neurons or in a slice preparation respectively and in-
dependently [3, 4]. The functional difference of each STDP
has been studied recently.

A simulation experiment showed that temporally asym-
metric STDP leads to self-organization of feedforward net-
works starting from a pacemaker neuron, because asym-
metric STDP gets rid of feedback paths [5]. By contrast,
symmetric STDP leaves feedback paths. The pacemaker
neuron, which fires with the constant frequency, is found
in several brain regions. This neuron is rarely affected by
other neurons [6]. Without the pacemaker neuron, how
does the topology of the network change depending on the
difference of STDP? The purpose of this study is to clar-
ify the difference of the topological change of a recurrent
neural network by asymmetric or symmetric STDP.

2. Methods

2.1. Neural Network Model

We adopt a spiking neuron model, which is based on the
chaotic neuron model but the output function is the Heav-
iside function [7]. After it fires, the neuron becomes more
refractory to further firing for a time. Assuming thatxi rep-
resents an internal activity of each neuron andyi represents
an output value, the dynamics of this model are represented
by the following equations:

xi(t + 1) =

N∑

j=0

t∑

d=0

exp(−d
τ

)sjw ji y j(t − d)

+

t∑

d=0

exp(−d
τ

)Ai(t − d) (1)

−α
t∑

d=0

exp(− d
τre f

)yi(t − d) − θ,

yi(t) =


1 i f xi > 0

0 i f otherwise,
(2)

where N is the total number of the neurons,sj is the
discrimination parameter as to #j neuron is excitatory or
inhibitory (sj = 1.1 or sj = −4.0, respectively),w ji is the
synaptic weight from #j neuron to #i neuron,Ai(t) is the
external input to #i neuron,α is the scaling parameter of
the refractory effect, τ is the decay time constant of the
membrane potential,τre f is the decay time constant of the
refractory effect,θ is a threshold for firing. For simplicity,
time is assumed to be discrete.

We investigated a recurrent neural network composed of
200 neurons. 80% of all neurons are excitatory, and 20%
are inhibitory. The rate of connections is about 20%, that
is, each neuron receives synaptic inputs from about 20%
of all neurons except itself (wii = 0). The initial synaptic
weights are generally asymmetrical, that is,wi j , w ji , and
the random values are in a uniformly distributed in [0, 1].

2.2. Asymmetric and Symmetric STDP Learning Rules

According to the experimental data [3, 4], we assume
that the window function of asymmetric STDP (Fig.1(a))
is represented by the following equation:
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∆w =



Ap exp(−∆t
τp

) if ∆t > 0

−Ad exp(∆t
τd

) if ∆t < 0

0 if ∆t = 0,

(3)

where∆t is the temporal difference between presynaptic
and postsynaptic action potentials (tpost− tpre), Ap andAd

are scaling parameters of the changes in synaptic efficacy,
andτp andτd are the rates of exponential decays. Addi-
tionally, we assume that the window function of symmetric
STDP (Fig.1(b)) is represented by the following equation:

∆w = a(1− b∆t2) exp(−c∆t2), (4)

wherea, b, andc are the parameters which characterize
the shape of the window function. The modification of the
synaptic weight obeys the following multiplicative equa-
tion:

wi j (t + 1) = wi j (t) × (1 + ∆w), (5)

The amount of potentiation is equal between asymmetric
and symmetric STDP, and the amount of depression is also
under the same condition. Ratio between amount of poten-
tiation and depression is set 0.9 : 1.0 to avoid bursting.
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Figure 1: Window functions. (a)Asymmetric STDP　
(b)Symmetric STDP

2.3. External Inputs

Independent Poisson-process spike trains are assumed to
be the external input spatiotemporal patterns for the neu-
rons. The amplitude of the external input is set uniform. To
examine the effects of the changes in the synaptic weights
by spatiotemporal patterns, the external input with the pe-
riod of 100 ms is applied repeatedly.

2.4. Topological Measures

We measured characteristic path length to evaluate the
depth of the network, and circular path length to detect the
feedback paths. In this study, we assume that a path ex-
ists if a synaptic weight of the connection is beyond the
mean synaptic weights (path threshold) of all connections.
Therefore, the path threshold is changed temporally, and

the number of paths is almost the same between asymmet-
ric and symmetric STDP. We also take into account direc-
tions in each path. Most of arbitrary two neurons can be
linked through relaying neurons if paths are well selected.

2.4.1. Characteristic Path Length

As a method to evaluate the network characteristics,
characteristic path lengthL is defined by the following
equations:

L =
1
N

N∑

i=1

Li , Li =
1

N − 1

N∑

j=1, j,i

di j , (6)

where Li is characteristic path length of #i neuron,N
is the total number of the neurons,di j is the shortest path
length from #i neuron to #j neuron.

2.4.2. Circular Path Length

To evaluate the feedback paths, we define circular path
lengthC as the following equations:

C =
1
N

N∑

i=1

Ci , Ci = min
all circular path

dii , (7)

whereCi is minimum circular path length of #i neuron,
N is the total number of the neurons,dii is the shortest path
length from #i neuron to oneself with going through other
neurons.

3. Simulation Results

3.1. Firing Pattern

Under moderate level of input frequency, synchronous
firings are frequently observed without STDP (Fig.2 (a)).
Asymmetric STDP tends to sharpen synchronous firings
(Fig.2 (b)). By contrast, the synchronous firing disappears
by symmetric STDP(Fig.2 (c)). These tendency are quan-
titatively evaluated by the synchrony coefficient (Fig.3).
The synchrony coefficient S(t0) is defined by the follow-
ing equations [8]:

S(t0) = max
t′=0,1,...,T−1

C(t0 − t′; t0), (8)

C(t; t0) =

c
Nτs

∑N
i=1

∑
l
∑t+τs/2

t′=t−τs/2
δ(t′ − tli )

1
NT

∑N
i=1

∑
l
∑t0

t′=t0−T δ(t
′ − tli ),

(9)

wherec is a scaling parameter(c = τs/T in this study),
N is the total number of the neurons,T is the period of
the input spatiotemporal pattern,tli is the timing of thel th
spike of thei th neuron, andτs is a temporal window epoch
for synchrony evaluation. In the case of asymmetric STDP,
firing neurons are clustered, as illustrated in Fig.4. As a
result, feedforward networks will be self-organized.
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Figure 2: Typical examples of the firing pat-
tern. (a)Without STDP (b)Asymmetric
STDP (c)Symmetric STDP
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Figure 3: Synchrony coefficient. The line indicates mean
synchrony coefficients over 100 simulations. The error bars
are the standard deviation.
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Figure 4: Firing neurons are clustered by asymmetric
STDP (The neuron indices are sorted)

3.2. Network Diagram

In Fig.5 , neurons are arranged depending on the firing
cluster in Fig.4. Feedback paths of network with asym-
metric STDP are fewer than those of the initial state, as
illustrated in Fig.5(b) . In contrast, the number of feedfor-
ward and feedback paths with symmetric STDP is almost
the same as that of the initial state (Fig.5 (c)).

3.3. Characteristic Path Length

Figure 6 illustrates that asymmetric STDP increases
gradually the characteristic path length. This suggests that
arbitrary two neurons need more relay neurons between
them. Assuming each relaying neuron included in a layer,
we can consider that the layer becomes deep. In contrast,
symmetric STDP does not change the characteristic path
length so much.

3.4. Circular Path Length

Figure 7 illustrates that asymmetric STDP increases cir-
cular path length, and symmetric STDP does not change
it so much. If arbitrary two neurons have feedforward and
feedback paths, the circular path exists. The result suggests
that recurrent paths decrease when asymmetric STDP is ap-
plied. This may be due to asymmetrical selection of paths
in the network.

4. Discussion and Conclusion

The results may be due to the speciality of our
model. Even if a simple integrate-and-fire neuron model
is adopted, the results are almost the same as shown above.
The dynamics of the model are represented by the follow-
ing equations:

τ
dV(t)

dt
= −V(t) + I (t), (10)

V(t) := V0 if V(t) ≥ V1, (11)

whereV(t) is membrane potential,τ is decay constant,
I (t) is input current,V0 is initial value,V1 is threshold.

In this study, we analyzed how the topology without
pacemaker neuron is changed by asymmetric or symmetric
STDP. We measured characteristic path length and circu-
lar path length. The result suggests that asymmetric STDP
gets rid of feedback paths. As a result, the depth of the net-
work increase, and feedback paths decrease, that is, asym-
metric STDP turns a recurrent network into a feedforward
network. In contrast, symmetric STDP leaves the feedback
paths, namely, keeps the recurrent structure.
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Figure 5: Typical examples of the network diagram. Red
lines represent feedforward paths in a firing cluster, which
is a firing sequence shown in Fig.4. Blue lines represent
feedback paths (reverse directions to the red lines). The
neurons, which do not belong to one of five firing clus-
ter, are not illustrated. (a)Without STDP (b)Asymmetric
STDP (c)Symmetric STDP

 2

 2.1

 2.2

 2.3

 2.4

 0  100000

Without STDP
Asymetric STDP
Symetric STDP

t(ms)

L
(t

)

Figure 6: Characteristic path length. The line indicates
mean characteristic path lengths over 100 simulations. The
error bars are the standard deviation.
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Figure 7: Circular path length. The line indicates mean
circular path lengths over 100 simulations. The error bars
are the standard deviation.
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