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Abstract—Our previous study proposed an applica-
tion of the particle swarm (PSO) optimization to find de-
sired parameters for multi-objective problems (MOPs) in
switched dynamical systems. This study proposes an ap-
plication of the independent-minded PSO (IPSO) to the
MOP. Various simulation results show that the application
of IPSO to the MOP is effective and IPSO can obtain better
results than PSO.

1. Introduction

The Particle Swarm Optimization (PSO) [1]–[2] is an al-
gorithm to simulate the movement of flocks of birds. Each
particle of swarm tries to find a better solution according
to its personal best position and the swarm best position.
The many real/potential applications have been proposed,
including design of artificial neural networks and power
electronics [3], [4].

Our previous study proposed an application of the PSO
to multi-objective problems (MOP) [5]. We considered
the application to an example of the switched dynamical
systems (SDS) which relates to simplified model of photo-
voltaic (PV) systems such that the input is a single solar cell
and is converted to the output via a boost converter [6]. Our
SDS includes a peace wise linear (PWL) current-controlled
voltage source (CCVS) that is a simplified model of the so-
lar cell and the switching role is variant of peak-current-
controlled switching. We derived two equations that give
period-doubling bifurcation set and the maximum power
point (MPP) for the parameter. The two equations wear
transformed into an the MOP described by the hybrid fit-
ness function consisting of two functions evaluating the
validity of parameters and criteria. The proposed method
permits deteriorate of some component below the criterion,
and it helped an improvement of trade-off problems in ex-
isting the MOP solvers. Simulation results showed that the
efficiency of the proposed algorithm is confirmed by mea-
suring in terms of accuracy, computation amount and ro-
bustness.

On the other hand, we have also proposed new PSO,
independent-minded PSO (IPSO) [7]. The most important
feature of IPSO is that it is decided stochastically that each
particle depends ongbestor becomes independent from the
swarm and moves depending only onpbest. In other words,

the particles are not always connected each other, and they
act with self-reliance. IPSO was applied to some bench-
marks used widely in the literature, and it has been con-
firmed that IPSO is effective for multimodal problems with
numerous local optima.

This study propose an application of IPSO to the MOP
and applies the proposed algorithm to find desired parame-
ters for the MOP in SDS. Various simulation results show
that IPSO is effective not only for the uni-objective bench-
marks but also for the MOP. Furthermore, we confirm that
the application method of PSO to MOP proposed in our
previous study is effective not only for the standard PSO
but also for other improved PSOs.

2. Multi-Objective Optimization for Circuit model of
the boost converter with a solar cell.

This study consider a optimization problem which re-
lates to the stability and MPP detection of the SDS, as an
application example of IPSO to the MOPs.

2.1. Circuit model
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Figure 1: Circuit model of the boost converter with a solar
cell.

Figure 1 shows the SDS where the CCVS is character-
ized by the 2-segment PWL function [6]. The dimension-
less circuit equation is described by

dx
dτ
=

 γy(x), for State 1

γ(y(x) − q), for State 2,
(1)

y(x) =

 − β(x− 1)+ 1, for x > 1

− α(x− 1)+ 1, for x ≤ 1,
(2)

SW Rule:
State 2→ State 1: whenx = X− > 0.

State 1→ State 2: atτ = n andx > X−,
(3)
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Figure 2: Average power characteristics forα = 0.5, β =
9.0, q = 1.6 andX− = 0.7. FPO shows characteristics of
the stable/unstable FPO.

where the SW rule is a variant to peak-current control. The
dimensionless variables and parameters are defined by

τ = t
T , x = i

Ip
, y(x) = Vi (Ipx)

Vp
, α =

raIp

Vp

β =
rbIp

Vp
, q = Vo

Vp
, γ =

TVp

LIp
, X− =

J−
Ip
.

(4)

The dimensionless 5 parameters can be classified into two
categories: (α, β, q), which characterizes “solar cell and
load”, and(γ,X−) which characterizes “switching control”.

In order to consider the power characteristics, the dimen-
sionless instantaneous and average powers are defined as

pin(τ) =
i(t)
Ip

Vi(t)
Vp
, PA =

1
Np

∫ Np

0
pin(τ)dτ (5)

whereNp = Tp/T is the dimensionless period of a stable
periodic orbit (SPO) or an unstable periodic orbit (UPO)
for dimensionless timeτ.

In order to describe the objective equation, we define the
phase map. Letτn denotes then-th switching time at the
lower thresholdX−, and letθd be a border time such that
a trajectory started from (θd,X−) reaches (1,1). Sinceτn
determinesτn+1, we can define the return map from positive
reals to itself. Using the exact piecewise solution, the one-
dimensional map can be described explicitly：

F(τn) =

 f1( f2( f3( f4(τn)))), for 0 ≤ τn < θd
g1(g2(τn)), for θd ≤ τn < 1

(6)

where

τn+1 = f1(τs2), τs2 = f2(xs1), xs1 = f3(τs1), τs1 = f4(τn)

τn+1 = g1(xs2), xs2 = g2(τn), g2(θd) = 1.

Let a phase variableθn = τn mod 1. The phase mapf from
the unit intervalI ≡ [0,1) to itself;

θn+1 = f (θn) ≡ F(θn) mod 1, for θn ∈ I . (7)

A point p is said to be ak-periodic point ifp = f k(p) and
p , f l(p) for 1 ≤ l < k where f l(xp) = f ( f l−1(p)) and
f 0(p) ≡ p. A 1-periodic point is referred to as a fixed
point. A periodic pointp is said to be unstable and stable
for initial value if |D f k(p)| > 1 and |D f k(p)| < 1, respec-
tively, whereD f k(p) is the slope off k at p. The stable and
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Figure 3: Parameter sets of bifurcation and MPP forα =
0.5, β = 0.9 andq = 1.6. D1: the period doubling bifurca-
tion set.M: ridge of the average power of FPO.

unstable periodic points correspond to the SPO and UPO
of the SDS, respectively.

Figure 2 shows the average powerPA of a fundamental
periodic orbit (FPO) which corresponds to the fixed point
p1. As γ reaches the first period doubling bifurcation set
D1 and decreases, the FPO is changed from SPO to UPO
and thePA has the peak (i.e., MPP) atγ = 0.884, namely
the MPP forγ (∂PA/∂γ = 0). TheM is one-to-one on theγ
versusX− plane and gives the ridge of thePA characteristics
shown as Fig. 3.

2.2. Multi-Objective function

The MOP is defined for finding desired parameters.
Since bifurcation analysis in the 5-dimensional parameter
space (corresponding to particle position~ai in the PSO)
is extremely hard, we focus on 2-dimensional parameters
~a ≡ (a1,a2) ≡ (γ,X−) which control the switching. As
the target parameter value of the MOP, we consider the
intersection of the parameter setM (the MPP forγ) and
the period doubling bifurcation setD1 (border of stabil-
ity of the FPO). In other words, we define the intersection
(a1,a2) = (γ,X−) = (1.605,0.506)with PA = 0.832shown
in Fig. 3 as the desired parameter set which is the objective
solution. The search spaceDs is defined as0 < a1 ≤ 2
and0.3 < a2 ≤ 0.9. Note thatPA increases asγ decreases
and asX− increases. Now, therefore, the MPP among the
search spaceDs is in the area with the smallerγ and larger
X−. However,γ depends on the clock periodT and device
speed as Eq. (4). Therefore, because the circuit with small
γ is hard to realize, it is not enough to simply find the pa-
rameter with the largePA.

Two objective functions are follows. If we can minimize
bothF1 andF2, we can obtain the realizable output having
desired power.

The first one is about the MPP forγ. Whether~a is the
MPP is obtained by calculating of the slope on present po-
sition as

f1(~a) ≡ ∂Pa

∂γ
= 0, F1(~a) = | f1(~a)|

F1(~a) =

∣∣∣∣∣∣∂PA(~a)
∂γ

∣∣∣∣∣∣ =
∣∣∣∣∣∣∂PA(~a)
∂a1

∣∣∣∣∣∣ .
(8)
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F1(~a) = 0 means that~a generates the maximum average
power onγ, namelya1.

The second objective function evaluates whether~a is the
period doubling bifurcation set according to

f2(~a) =D f (p1) − 1 = 0, F2(~a) = | f2(~a)|
F2(~a) = |D f (p1) + 1|.

(9)

F2(~a) = 0 means that~a gives the period doubling bifurca-
tion setD1 shown in Fig. 3.

3. Independent-Minded PSO for MOPs

We propose the application of IPSO to the MOP. This
section explains how to apply IPSO to the Sect. 2.

In the algorithm of PSO, multiple potential solutions
called “particles” coexist. Each particle has two informa-
tions; position and velocity. At each time step, each par-
ticle flies toward its own past best position (pbest) and the
best position among all particles (gbest). In other words,
they always influence each other. However, the particles of
IPSO have independence, thus, it is decided stochastically
whether they are connected to others at every step. In other
words, they are not always affected bygbestand theirpbest
does not always affect the swarm.

The position vector ofi-th particle at discrete time
n and its velocity vector are represented by~ai(n) ≡
(ai1,ai2, · · · ,aiD) ∈ <D and~vi(n) ≡ (vi1, vi2, · · · , viD) ∈
<D, respectively, where (i = 1, 2, · · · ,N). The position
corresponds to the parameter~a in the MOPs.pbestof the
particlei andgbestare denoted as~api and~ag. The~ag is the
potential solution at timen.
Step 1(Initialization): Let a discrete generation stepn = 0.
Randomly initialize the particle position~ai(n) in the search
spaceDs ⊂ <D, and initialize other variables; velocity
~vi(n) = 0, ~api = ~ai(n) and~ag = ~a1(n).
Step 2(Evaluation): Terminate the algorithm if

F1(~ag) < Cr1 AND F2(~ag) < Cr2, (10)

If not, go to Step 3.
Step 3(Connecting): Decide whether each particlei is con-
nected to the others according tor3i which is a random
value (∈ (0,1)) for the particlei. If r3i ≤ C, the particlei is
connected to other particles. If not, the particlei is isolated
from the swarm, then, it and others does not affect each
other. C is a constant cooperativeness coefficient which is
the independence probability of the particles.
Step 4(Updating): Update~vi and~ai of each particlei,

~vi(n+ 1) =
w~vi(n) + ~r1ρ1(~api − ~ai(n))+ ~r2ρ2(~ag − ~ai(n)),

r3i ≤ C

w~vi(n) + ~r1ρ1(~api − ~ai(n)), r3i > C

~ai(n+ 1) = ~ai(n) + ~vi(n+ 1),

(11)

wherew is the inertia weight determining how much of the
previous velocity of the particle is preserved.ρ1 and ρ2

are two positive acceleration coefficients.~r1 and ~r2 areD-
dimensional uniform random number vectors fromU(0,1).
These equations mean that whether each particle is affected
by gbestis decided at random with the cooperativenessC.
WhenC = 0, all the dimensions of all the particles move
depending only on ownpbest, and whenC = 1, the algo-
rithm is completely the same as the standard PSO.
Step 5(Hybrid fitness): Renewpbesti if the fitness is im-
proved or satisfies the criteria. Let~api = ~ai(n+ 1) if(

F1(~ai(n+ 1)) < F1(~api ) OR F1(~ai(n+ 1)) < Cr1

)
,

AND(
F2(~ai(n+ 1)) < F2(~api ) OR F2(~ai(n+ 1)) < Cr2

)
,

(12)

is satisfied for all the objective functions.
Renewgbestas~ag = ~api , wherei is connected to others,
namelyr3i ≤ C, and is a particle whosepbesti satisfies(

F1(~api ) < F1(~ag) OR F1(~api ) < Cr1

)
,

AND(
F2(~api ) < F2(~ag) OR F2(~api ) < Cr2

)
.

(13)

If more than one particle satisfies Eq. (13), the particlei
with the smallest index is chosen.
Step 6Let n = n + 1, return to Step 2 and repeat until the
maximum time limitnmax.

4. Numerical experiments

For numerical experiments, we use the following param-
eters; N = 40, w = 0.729, ρ1 = ρ2 = 1.494, nmax =

1500, C = 0.1, Cr1 = 5.0× 10−4, Cr2 = 1.5× 10−3.
Table 1 shows the performances of the standard PSO

and IPSO in terms of the mean termination generation and
achievement rate over 100 trials. We can see that IPSO
greatly improved the performance of PSO. Although the
termination generation of IPSO is shorter than PSO, the
achievement rate of IPSO is better than PSO.

Table 1: Average results of PSO and IPSO over 100 trials.
PSO IPSO

Termination generation 459.96 242.31
Achievement rate 70% 99%

Figures 4 and 5 show typical changes of the average
power PA of gbest and typical fitness functions in the
searching process, of the standard PSO and IPSO, respec-
tively. From these figures, we can observe that the two
fitness functions converged, not only decreasing, but also
increasing. This effect was caused by the two criteria in
Eqs. (12) and (13). Each increase of the two fitness helps
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Figure 4: Search process by the standard PSO. (a) Change
of the average power corresponding togbest. PA = 0.9051.
(b) Search process ofF1(~ag) and F2(~ag). Termination
time is n = 1000 = nmax. The results are(F1, F2) =
(0.0733,0.0015)with (a1,a2) = (γ,X−) = (0.990,0.6892).

other decrease, and this effect leads thePA to the maxi-
mum average power with the realizable parameters. How-
ever, PSO was unable to succeed in escaping from the local
optima even with the criterion effect. In fact, indeedF2

reached the termination criterionCr2, but F1 did not con-
verge toCr1. On the other hand, IPSO converged more
rapidly than PSO, and even though it trapped at local op-
tima, it was able to escape. We can conclude that this is
due not only to the criterion effect but also to the capability
of IPSO.

Figure 6 shows the mean termination generation and
achievement rate over 100 runs in different cooperativeness
C. Note that the standard PSO usedC = 1.0 for all the sim-
ulations, namely, IPSO withC = 1.0 is exactly the same as
PSO. We should be noted that IPSO withC = 0.02–0.9
obtained better results than when it was fully-connected
(C = 1.0). From this result, we can understand that this
the MOP is the multimodal problem [7] and the parameter-
dependence of IPSO is weak because IPSO kept better re-
sults than PSO long range ofC. Furthermore, this result
mean that that the particle diversity is more important for
the multimodal functions than the quick communication,
and the particles of IPSO is more diverse than PSO.

From these results, we can conclude that IPSO is ef-
fective not only for the uni-objective benchmarks but also
for the MOP. It also means that the proposed application
method [5] of PSO to the MOP is effective not only for the
standard PSO but also for other improved PSOs as IPSO.

5. Conclusions

This study has proposed the application of IPSO to the
MOP for finding desired parameter of the SDS. Performing
basic numerical experiments, we have confirmed that IPSO
is effective not only for the uni-objective benchmarks but
also for the MOP.
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Figure 5: Search process by IPSO. (a) Change of the aver-
age power corresponding togbest. PA = 0.8321. (b) Search
process ofF1(~ag) and F2(~ag). Termination time isn =
197. The results are(F1, F2) = (3.38× 10−4, 0.013) with
(a1,a2) = (γ,X−) = (1.605, 0.506).
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Figure 6: Influence of the CooperativenessC on the perfor-
mance of IPSO. (a) Average of termination generations 100
trials. (b) Average of the achievement rate over 100 trials.
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