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Abstract– Nonlinear models, like the self-exciting 

threshold autoregressive (SETAR) model and Markov-

switching autoregressive (MS-AR) model have been 

proposed for modeling the Gross National Product (GNP) 

time series. Both SETAR and MS-AR, however, require 

estimation of a large number of parameters relative to the 

small amount of GNP observations. While modeling the 

training data reasonably well, these models tend to over-

fit and perform poorly in terms of out-of-sample 

forecasting. The aim here is to investigate the efficacy of a 

novel parsimonious nonparametric and nonlinear model, 

which can outperform SETAR and MS-AR in terms of 

out-of-sample GNP forecasting accuracy. As it is 

important to quantify forecast uncertainty, leading to well 

informed policy-making, we generate both point and 

density forecasts. We evaluate point forecasts using the 

root mean square error (RMSE) and mean absolute error 

(MAE), while density forecasts are evaluated using the 

continuous ranked probability score (CRPS).  

 

1. Introduction 

 
    The GNP provides a measure of the economic wealth of 

a country. It is one of the most commonly used 

macroeconomic indicators and is reported quarterly. The 

need for accurate and timely forecasts of the GNP time 

series stems from the requirements of efficient decision 

and policy-making. The complex dynamics underlying the 

GNP time series, along with limited number of post-war 

observations, however, make the task of generating 

reliable forecasts quite challenging [1].  
 

    The last two decades have witnessed a surge in 

nonlinear modeling techniques for characterizing 

economic time series [2, 3, 4, 5]. Deviations from the 

Gauss-Markov assumptions (linearity, homogeneity and 

independence) are indications of the presence of 

nonlinearity in the data generating process. The GNP time 

series is shown to follow an asymmetric cyclical process, 

giving rise to different regimes (growth and recession), 

with growth periods being much longer than recessionary 

periods [2]. Nonlinear models like the SETAR model [4, 

5], and MS-AR models [3] have been employed for 

forecasting the GNP time series. The rationale behind 

these nonlinear models (SETAR and MS-AR) is to 

characterize regimes of growth and recession separately 

rather than treat them as one, as opposed to the linear 

models. Hence, SETAR and MS-AR are also known as 

regime-switching models. 

 

    Due to the complex model structure, the parameter 

estimation procedure for regime-switching models is not 

straightforward. Also, it has been shown that the forecast 

performance of SETAR is highly sensitive to the 

uncertainty in parameter estimates [6]. The major 

limitation of regime-switching models, however, lies in 

the fact that there is no clear consensus if these models 

(SETAR and MS-AR) are better than their linear 

counterpart (AR models), from the perspective of out-of-

sample forecasting [7].  

 

    Motivated by Occam’s razor and the impact of accurate 

GNP forecasts on policy-making and in turn on our 

financial markets, we seek parsimonious nonlinear models 

which are based on simple assumptions and can generate 

accurate point and density forecasts of US GNP. In this 

paper, we propose a nonlinear model that can be viewed 

as a hybrid between a nearest neighbour method [8] and 

the random analogue prediction (RAP) model [9]. The 

proposed model does not make prior assumptions 

regarding the true functional form generating the data, 

hence the model is nonparametric. We compare the 

competitiveness of the proposed model with classical 

linear and nonlinear models (AR, SETAR and MS-AR) in 

generating out-of-sample point and density forecasts.  

 

    The paper is arranged as follows. Section 2 gives details 

of the employed dataset, and discusses the classical 

models used previously for forecasting US GNP. This 

section also proposes a novel nonlinear and nonparametric 

model. Section 3 provides out-of-sample forecast 

comparison between different models and the random 

walk benchmark, while section 4 offers conclusion. 
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 2. Linear and Nonlinear Modeling Approaches 

2.1. Data 
 

    The GNP time series comprises seasonally adjusted 

quarterly prices of real US GNP (in billions of dollars). 

The time series contains US GNP recordings from 

1947Q1 to 2008Q3 at 2000 prices. The recordings were 

obtained from the Federal Reserve Economic Data II 

(FRED II) affiliated with the Federal Reserve Bank of St. 

Louis. The original data was transformed to give quarterly 

percentage growth rate, and all the models were estimated 

using the transformed time series.  

 

2.2. Autoregressive Model  

 

    An autoregressive (AR) model is a linear recursive 

model that belongs to the Box and Jenkins [10] class of 

models. The AR model characterizes the time series 

assuming linear relationship between observations. The 

number of parameters incorporated in the model 

corresponds to the order of the model. An AR model of 

order p is denoted as AR (p) and can be represented using 

the following form:- 
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where xt  is an observation in the time series at time t, αo is 

a constant, αi denotes AR model parameters for i = 1, 2, ..., 

p, while εt is an independent and identically distributed 

(IID) process with mean zero and variance σ
2
. In this 

paper, we use the Akaike Information Criterion (AIC) 

proposed in [11] for selecting the AR model order. The 

AR model parameters are estimated using ordinary least 

squares (OLS).   

  

2.3. Self-exciting Threshold Autoregressive Model  
 

Threshold Autoregressive (TAR) models were proposed 

in [12]. The TAR model divides the original time series 

into a number of distinct non-overlapping regimes, and 

models every regime as a separate linear process. SETAR 

models are a subclass of TAR models whereby the 

threshold variable is forced to be endogenous, i.e. the 

threshold is chosen from an observation in the time series. 

   

    A SETAR model composed of Nr number of distinct 

regimes, for a time series xt, is denoted as SETAR (Nr; p1, 

p2, ... , pNr), and is represented as:- 
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where αij are the autoregressive coefficients for a given 

regime index j that obeys rj-1 ≤ xt-d < rj, while rj for j = 1, 

2, ... , Nr are the thresholds that divide the time series into 

different regimes, pj is model order for the corresponding 

regime, whereas εtj is an IID process with mean zero and 

variance σj
2
. We estimate a bi-regime SETAR model for 

US GNP as employed previously in [4, 5]. To estimate the 

model parameters, we varied rj and d over a grid, and 

select a particular set of parameter values that minimizes 

the overall residual sum of squares (RSS). For a given 

threshold and delay order, the AR model order and model 

coefficients were estimated by applying OLS in each 

regime separately.  
 

2.4. Markov-switching Autoregressive Model  

 

The bi-regime Markov-switching model (as proposed 

in [3]) with AR order p can be denoted as MS (2)-AR (p), 

and is defined as:- 
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where xt is an observation in the time series, αi are the AR 

coefficients for i = 1, 2, … , p, st is a regime variable such 

that, st = 1 corresponds to growth and st = 2 corresponds 

to recession. The mean of the process �(st) switches 

between the two regimes, such that �(st) is positive if st = 

1, and negative otherwise.  

 

    The transition between the two regimes depends on the 

variable st, governed by a first order Markov process with 

transition probabilities Pij = P(st = j | st-1 = i). The 

parameter vector that needs to be estimated for MS-AR 

model is θ = {�(1), �(2), α1, α2, …, αp, σ, P11, P22}. The 

parameter vector θ is chosen so as to maximize the 

likelihood of the observations. The estimation of this 

parameter vector was based on maximizing the likelihood 

using expectation maximization (EM), for details see [13].  

 

2.5. fraction-Nearest Neighbor Model 

 

The nearest neighbor method [8] is a nonparametric 

nonlinear approach which relies on the assumption that 

neighboring states have similar future outcomes (see for 

example [9, 14]). The fraction-Nearest Neighbor (f-NN) is 

an adaptive nearest neighbor model that defines a 

neighborhood size based on the fraction of total points in 

the training set. Denoting neighborhood in terms of a 

fraction has the advantage that the neighborhood size 

adapts to changes in local data density and total number of 

observations, as opposed to the case when neighborhood 

size is defined in terms of a fixed radius, or number of 

neighbors. 

 

    The rationale behind the f-NN model lies in estimating 

an optimum neighborhood fraction, and using the 

collective behavior of the selected neighbors in generating 

a forecast. This model requires estimation of parameter f, 
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which denotes the size of the optimum neighborhood. 

Given an optimum neighborhood size, one can quantify 

the collective behavior of neighboring states using for 

example, the mean, or build a local linear model, and use 

the estimated local model for forecasting the time series. 

 

To estimate the optimum neighborhood size, we first 

create a set of delay vectors using the time series for GNP 

quarterly growth rate. The dimension of the delay vector 

can be viewed as being similar to the order of the model. 

Having created a set of delay vectors, we compute the 

distance (Euclidean distance) of the current delay vector, 

with previous delay vectors.  

 

For estimating the model parameter, we divide the in-

sample data into two parts, such that the first half is 

employed for training and the second-half for validation. 

The value of f is varied from a minimum, so as to include 

only the closest delay vector to the current state, to a 

maximum, so as to include all states within the training set. 

For a given f, a set of delay vectors that lie within the 

neighborhood are selected from the training set. The 

future observations of these delay vectors are randomly 

sampled and issued as a density forecast. The value of f 

that minimizes the density forecast error (quantified using 

CRPS) on the validation set is chosen for generating out-

of-sample forecasts.  

  

3. Results and Observations 
 

3.1. Performance Scores 
 

    The point forecast performance for a particular forecast 

horizon h is evaluated using the root mean square error 

(RMSE) and mean absolute error (MAE), given by:- 
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where RMSEh (MAEh) is the RMSE (MAE) at horizon h, 

xi+h is the actual observation, ihix |ˆ + is the h-step ahead 

forecast, T is the forecast origin and N is the length of the 

time series. In order to evaluate the density forecast 

performance, we use the empirical form of continuous 

ranked probability score (CRPS). The CRPS is defined 

as:- 

 

`||
2

1
|| XXExXECRPS FF −−−=         (6) 

 

where X and X` are independent samples being drawn 

from the forecasts density function, each having the same 

distribution F, EF is the expectation with respect to the 

distribution F, while x is the actual observation. For 

details regarding CRPS, please see [15]. 

 

3.2. Forecasting Scheme 
 

    A series of forecasts for horizons ranging from one to 

four quarters (one year) ahead is generated based on a 

rolling forecast scheme, as previously employed for GNP 

time series by [6]. The time series for GNP quarterly 

growth rate dating from 1947Q2-2008Q3, is divided into 

in-sample data from 1947Q2-1996Q4 for training and out-

of-sample data 1997Q1-2008Q3 for testing. Using the 

training set, the specifications of the optimum models 

were estimated as- AR (4), SETAR (2; 1, 1), MS (2)-AR 

(5), and f = 0.13. 

 

All models were estimated using only the training set, 

and the estimated parameters were then held ‘fixed’ while 

making out-of-sample forecasts. Hence, each model had 

access to precisely the same amount of information as 

every other model during the forecasting stage. We 

generated density forecasts using the proposed and 

classical based on Monte Carlo simulations (size 10,000). 

In order to generate point forecasts, we issued the mean of 

the forecast distribution at each forecast horizon as the 

point forecast. 

 

3.3. Forecast Comparison 

 
We evaluate AR, SETAR and MS-AR and the proposed 

model (f-NN) on out-of-sample GNP data (1997Q1-

2008Q3), using three different performance scores 

(RMSE, MAE and CRPS). We employ the random walk 

(RW) benchmark, whereby the current value in the time 

series is issued as a forecast for the next step (h=1). For 

multistep ahead forecast (h>1), the current observation is 

issued as a h-step n. Note that we can generate only point 

forecast using this benchmark, hence there are no RW 

statistics for CRPS. We generate and evaluate forecasts 

from one quarter (h=1) up to four quarters (h=4) ahead.   

 

The evaluation of point forecasts is presented in Table I 

and II. When evaluation is based on RMSE (Table I), we 

find that all models outperform the RW benchmark at all 

forecast horizons. This signifies that with respect to the 

benchmark, all models have some skill in forecasting the 

GNP time series. On comparing different models, we find 

that f-NN is one of the best models, producing most 

accurate forecasts for all horizons, except for h=2, where 

SETAR is better. When forecast evaluation is based on 

MAE (Table II), we find that f-NN consistently 

outperforms all the models on all forecast horizons. 

SETAR generates more accurate point forecasts than AR 

and MS-AR.  

 

The superior performance of the proposed model (f-

NN) is further highlighted when forecast evaluation is 

based on CRPS. It is evident from Table III, that density 
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forecasts from f-NN are superior to any of the classical 

models. For point forecasts, SETAR is the most accurate 

model compared to AR and MS-AR, while MS-AR is 

found to be superior to both SETAR and AR in generating 

density forecasts on the out-of-sample data. 

 

Table I 

Out-of-sample point forecast evaluation using the 

RMSE, for forecast horizon (h) ranging from 1 to 4 

quarters ahead. Least RMSE (most accurate) value at each 

horizon is depicted in bold.  

 

H RW AR SETAR MS-AR f-NN 

1 0.780 0.588 0.579 0.592 0.550 
2 0.648 0.572 0.552 0.586 0.560 
3 0.791 0.602 0.598 0.628 0.568 
4 0.712 0.606 0.607 0.632 0.577 
 

 

Table II 

Out-of-sample point forecast evaluation using the 

MAE. Least MAE (most accurate) value at each horizon 

is depicted in bold.  

 

H RW AR SETAR MS-AR f-NN 

1 0.670 0.493 0.484 0.498 0.446 
2 0.499 0.471 0.448 0.481 0.446 
3 0.637 0.487 0.472 0.509 0.455 
4 0.569 0.489 0.480 0.511 0.461 

 

 

Table III 
Out-of-sample density forecast evaluation using the 

CRPS. Least CRPS (most accurate) value at each horizon 

is depicted in bold.  

         

h AR SETAR MS-AR f-NN 

1 0.361 0.357 0.348 0.320 
2 0.357 0.352 0.345 0.325 
3 0.373 0.370 0.369 0.330 
4 0.375 0.370 0.369 0.333 

 

 

4. Conclusion 

 
We proposed a simple nonlinear and nonparametric 

model that convincingly outperformed AR, SETAR and 

MS-AR models on multiple forecast horizons, when 

evaluated using different performance scores. These 

results point towards classical parametric models (linear 

and nonlinear) over-fitting the in-sample data, due to 

which they fail to generalize on the out-of-sample dataset. 

Given the need for quantifying uncertainty in forecasts for 

informed decision and policy-making, we emphasize the 

need for evaluating models based on their ability to 

generate accurate density forecasts, as quantified by CRPS. 
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