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Abstract—Temporally precise structure of spike trains
are widely observed in the brain, such as in hippocampus,
but its functional role is not fully elucidated. We demon-
strate that different temporal patterns of an identical cell
group can modulate differently the retrieval of memory pat-
terns in its downstream network. The downstream network
consists of leaky-integrate-and-fire neurons and retrieves
memory patterns as cell-assemblies. Each pattern is as-
signed with a specific temporal sequence of spikes of the
upstream network mimicking hippocampal activity. Each
pattern is then embedded by spike timing-dependent plas-
ticity, while receiving the spike sequence assigned with it.
Retrieval phases take place after the learning phase, where
the temporal pattern representing hippocampal cells and
noisy input representing a bottom-up signal are given to
the network. The network can use both the temporal pat-
tern and the bottom-up input and also represent them with
the memorized patterns.

1. Introduction

Temporally precise structure of spike trains are widely
known in the brain, but its functional role is not clear [1].
One striking example of the temporally precise sequence
of spikes is found in the hippocampus. The spike activi-
ties in the hippocampus are known to be locked to the theta
rhythm - regular oscillation of the local field potential at
4-12 Hz [4]. Because a specific neuron fires at a specific
phase of the theta oscillation, the spike interval of a spe-
cific pair of cells is preserved, and this phase-locking activ-
ity leads to ordered temporal sequence of the spikes of the
neurons. So it is natural to ask whether this spatiotempo-
ral pattern of spikes can be used as information and can be
decoded by downstream neuronal network.

The hippocampus is one of the most important circuits
in the brain for learning and memory, and thought to play
an important role in contextually flexible behavior. Elec-
trophysiological studies showed that hippocampal activity
may be able to represent contextual information and change
the behavioral response to the external stimuli [2,3]. Tak-
ing into account that hippocampus does not receive any
direct sensory stimuli nor give direct motor outputs, it is
likely that lower-order nervous systems ,which are respon-

sible for dealing with external stimuli more directly, re-
ceive top-down signal from hippocampus and their activ-
ities are modulated. This dynamics may enable an animal
to be able to interpret an external stimulus in accordance
with the abstract information held in higher nervous sys-
tem, which may correspond to such as behavioral context,
environmental context or animal’s intention. This concept
leads us to the question whether the lower-order network,
receiving both the bottom-up signal and temporal activity
from hippocampus, can utilize both information and repre-
sent them.

In this paper we propose an abstract model for the modu-
latory effect of temporal pattern to downstream memory re-
trieval. We model the downstream network receiving both
temporal spike train from the hippocampus and bottom-
up signal from external stimuli. This network behaves as
winner-take-all network, and represents the response to the
inputs reactivating a memorized cell-assembly. Firstly, a
learning phase takes place where each memory pattern is
learned. Each pattern is assigned with a specific sequence
of upstream spikes mimicking hippocampal activity, and
learned while the network receives the assigned sequence.
Spike-timing-dependent-plasticity (STDP) is employed in
order to make the network able to recognize the temporal
structure [5,6]. In the retrieval phase, the network receives
external inputs representing the bottom-up signal, which
has only ambiguous information to select one of the mem-
orized patterns, and receives temporal pattern inputs from
the hippocampal cells. The network is able to represent
the response to the stimuli with a cell-assembly employing
both the top-down and bottom-up signals.

2. The Model

2.1. The model outline

Figure 1 shows the schematic illustration of the model
network we consider, in which leaky integrate-and-fire neu-
rons are recurrently connected. Each integrate-and-fire
neuron is connected to all other neurons. In addition, a
globally uniform inhibition without modification of learn-
ing is included in an all-to-all manner. The spatiotemporal
spikes of "hippocampal cells” and bottom-up currents are
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Figure 1: Schematic diagram depicting the structure of the
network model

employed as controllable external dynamical inputs.

There are two successive phases in the model: (1) learn-
ing phase and (2) retrieval phase. In the learning phase, the
model neurons are divided into four groups: A, B, C, D.
Each of the them is referred as a memory pattern. Theare
are two kinds of spike sequence patterns of hippocampal
cells. The memory patterns A and C are assigned to one of
them, and the other two, B and D, are assigned with tempo-
rally reversed sequence. When synaptic modification takes
place, each pattern is activated one by one with noisy mem-
brane currents, while the whole network receives the tem-
poral spike pattern from the hippocampal cells, which is
assigned with that memory pattern. In the retrieval phase,
the network receives both external currents representing
the bottom-up signal and the spatiotemporal pattern from
the "hippocampal cells”, which is same as the spike trains
given to the network in the learning phase. There are two
kinds of bottom-up signals. One of them has biased cur-
rents into two of the memory patterns: A and B. The other
one has biased currents into C and D. We examine whether
the memory pattern associated with both the top-down sig-
nal and the bottom-up signal is retrieved in the retrieval
phase.

2.2. Dynamics of the model

We adopt integrate-and-fire neurons for the network.
The subthreshold membrane potential of the ith neuron
Vi(t) obeys the following equation:

Vi) _ L Vi)~ View) + 1797 ()
dt Tm

HFECR) + 110 + 177 @), (1)

where V;j(t) is the membrane potential of the ith neuron,
and 1, is the time constant of neuronal membrane de-
cay, and Ve is the resting potential, and 17OP(t), IREC(t),
1 (t), 1897 (1) are the input currents from top-down, recur-
rent connection, global inhibition, bottom-up, respectively.
When V;(t) reaches the threshold voltage, Vi, a spike of the
ith neuron is generated, and V;(t) is instantaneously reset to

the resting potential, Vy.st. The synaptic currents are given
by the following equations:
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where w] °F denotes the strength of the synaptic connec-
tions from the jth hippocampal cell to the ith neuron, wﬁEC
denotes the strength of the recurrent synaptic connection
from the jth neuron to the ith neuron, w' is the strength
of the global inhibitory synapses, t:‘ is the time of the kth
spike of the Ith presynaptic neuron in the hippocampus, t'Jf
is the time of the kth spike of the jth presynaptic neuron in
the network, d;; denotes the axonal delay from the jth neu-
ron to the ith neuron, I? is tonic external current and D¢ is
Gaussian white noise with zero mean and standard devia-
tion of D. N and M are the number of neurons in the model
network and hippocampus, respectively.

2.3. Structure of the spatiotemporal patterns of modu-
lation network
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Figure 2: Spatiotemporal pattern of the “hippocampal
cells” used as the top-down input.

The activity patterns of the "hippocampal cells” are em-
ployed as controllable external inputs. The spike activi-
ties are generated and are input to the model network with
synaptic connection, wf °7, from the hippocampal cells to
the retrieval network. Figure 2 depicts the construction of
the patterns. Each pattern is a repetition of an identical
120 ms long specific cycle. Each hippocampal neuron fires
once a cycle at a specific phase. The phase of a neuron is
chosen randomly from uniform distribution between 0 and
120 ms. There are two hippocampal patterns employed.
One is generated according to the rule mentioned above,
and the other is temporally reversed pattern of it for sim-
plicity and comparison. One is assigned with the memory
pattern A and C, and the other is assigned with B and D.
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2.4. The learning phase

In the learning phase, STDP learning is employed so
that the network can recognize the temporal orders of the
spikes. The top-down synaptic weights and the recurrent
synaptic weights evolve according to the STDP rule illus-
trated in Figure 3. The magnitude of change of synaptic
weight between a pre- and a postsynaptic neuron depends
on the timing of spikes: if the presynaptic spike arrives
at the postsynaptic neuron before the postsynaptic neuron
fires, the synapse is potentiated, and the reverse order re-
sults in a decrease of the synaptic weight.

pre JA_
postbtl_

0 AEF\
BN

0
spike interval, At

Figure 3: STDP rule.

For each pair of pre- and postsynaptic spikes, the corre-
sponding synaptic weight is modified by g — g + F(tpost —
tore). The STDP function F(At) is given by the following
equation;

[ Acexp() ifAt=0
F(AD ‘{ Aexp(X) ifAt<0 ©)

where tpost, tore are the time of spike emission of postsy-
naptic neuron and the time of spike arrival from presynaptic
neuron.

Each memory pattern is activated one by one for 2000
ms by giving incoherent Gaussian noise inputs with tonic
mean and deviation to the cells contained in the pattern.

2.5. The retrieval phase

In the retrieval phase, we employ two kinds of bottom-up
inputs: 1BOT-AB gnd |BOT-CD |BOT-AB gives biased mem-
brane currents to neurons contained in patterns A or B, and
IBOT-CD gives biased currents to patterns C and D. The
tonic value of mean of external current, Iio, depends on
which bottom-up signal is used: 1° = 2 if the ith neuron is
contained in the biased patterns, and otherwise Ii0 =0. The
bottom-up input gives currents to two of the memory pat-
terns, so that there is not enough information in a bottom-
up signal to select one memory pattern.

The dynamics of the network is examined under four
conditions, which means all the combinations of two hip-
pocampal inputs and two bottom-up inputs. A simulation
of 5000 ms is conducted and the spike rate for each mem-
ory pattern is calculated.

2.6. Simulation results

The number of the neurons, N, is 400, which means there
are 100 neurons in each memory pattern. The number of
hippocampal cells, M, is 20. We set the model parameters
as follows: Viest = —65, Vin = =50, 7, = 4ms, w' = 1,
A, = A_ =3, 7, = 7 = 20. Each value d;; was selected
from uniform distribution over [1 20]. In learning phase,
each memory pattern is activated by Gaussian noise with
mean of 1 and standard deviation of 2 mV. The initial val-
ues of wTOP and wREC are set at 0.5.
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Figure 4: Activated memory pattern ”A” in the learning
phase.
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Figure 5: Plot of the strengths synapses after the learning

Figure 4 illustrates a typical activated pattern in learning
phase. In this figure, the pattern A is activated by noisy
membrane currents. The repetitive hippocampal spike ac-
tivity employed as controllable top-down inputs is plotted
at the top.

Figure 5 illustrate a typical example of the strengths of
recurrent synapses and top-down synapses after the STDP
learning. The presynaptic hippocampal cells are numbered
401 to 420, and illustrated with the network neurons. The
synaptic connections within each group have been modified
in the learning phase. This synaptic modification leads to

- 590 -



the characteristics of winner-take-all network.

Figure 6 shows an example of the network dynamics in
the retrieval phase. In this case, 18°T-*B is given to the
network as a bottom-up input, and the temporal sequence
of the hippocampal cells is same as which is paired with
pattern A and pattern C in the learning phase. The firing
frequency of the pattern A ,which is associated with both
the hippocampal inputs and bottom-up signal, is high.
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Figure 6: Typical retreival dynamics with 1B°T-AB and tem-
poral input assigned with A, C.

Figure 7 compares the spike rates of the patterns under
all four conditions in retrieval phase. A set of a learning
phase and a retrieval phase is simulated for 100 times, and
the numbers of spikes rate in each of the memory patterns
in the retrieval phase is averaged. In all four cases, the spike
rate in one pattern is high, and the pattern is the one which
receives biased bottom-up signal and has been paired with
the given top-down signal. Note that each hippocampal cell
project to all of the neurons in the network, and the synaptic
weights are fixed in the retrieval phase for all of the four
conditions.

2.7. Discussion

We proposed a model, in which a network utilizes both
the information of noisy bottom-up input and the tempo-
ral spike sequence from another cell group, and repre-
sent them by reactivating the embedded cell assembly. To
make the network able to recognize the temporal pattern of
the spikes, spike-timing-dependent plasticity is employed
to determine the synaptic connections. Although the cell
group giving the temporal spike trains is referred as hip-
pocampus, we assume that the same dynamics can be used
to decode temporal codes and to represent them as spatial
assemblies in a number of different brain areas.
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Figure 7: Spike rate of each pattern under four conditions.
The nunmer of spikes in each group per a millisecond is
calculated. Each bar indicates the spike rate average of
each memory pattern for the condition indicated below:
conbination of the top-down and the bottom-up signals.
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